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Why counting and sampling in bit-vectors?

4 Not All Bugs Are Created Equal, But )

. uantifving Software Reliabilit
Robust Reachability Can Tell the Q M : y
: via Model-Counting
Difference
Guillaume Girol'®™, Benjamin Farinier?, Samuel Teuber'™ ) and Alexander Weigl
\ and Sébastien Bardin! / \ /
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Automating the Development of
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Automating the Development of SIMULATION
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Current state of the art

Counting

o« SMTApproxMC
« SMC
o SearchMC
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Current state of the art

Counting Sampling
o« SMTApproxMC o SMTSampler
« SMC o GuidedSampler
e SearchMC o MegaSampler
This work

o Significant recent improvement on CNF counting and sampling

— Can the improvement be translated to bit-vector counting directly?
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Framework for Counting

Bit-vector
F

CSB

-

Bitblasting

CNF
Fbit

Propositional
Model Counting

TechMap (STP)

Implementation

o Built on top of SMT solver STP

o Turned off simplifications and rewrites

ApproxMC

o Added ApproxMC in place of SAT solver backend

Model
Count
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Best Performing Settings

Bitblasting + Preprocessing + Model Counting

Results

Tseitin-Arjun-ApproxMC

= |

TechMap-ApproxMC _ B Number of Instances Solved
| ! : I i

Number of Instances Solved
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Framework for Sampling

Bit
vector

-

CSB

Bitblasting

CNF

Fbit

CNF Sampling

CNF
Sample

Sbit

Model
Construction

~

STP

2. CMSGen: Uniform-like sampling

Implementation

o Built on top of SMT solver STP

|. UniGen: Almost-uniform sampling

o Turned off simplifications and rewrites

e Added UniGen and CMSGen in place of SAT solver backend

STP

Bitvector
Sample

S
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Two modes of Sampling

o Almost-uniform sampling (UniGen)

— Sampling with theoretical guarantees. Hashing-based approach.

o Uniform-like sampling (CMSGen)

— No theoretical guarantee, but passes distribution testing based criterions

— CMSGen is made by using random heursitics in CryptoMiniSat
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Two modes of Sampling

o Almost-uniform sampling (UniGen)

— Sampling with theoretical guarantees. Hashing-based approach.

o Uniform-like sampling (CMSGen)

— No theoretical guarantee, but passes distribution testing based criterions

— CMSGen is made by using random heursitics in CryptoMiniSat

Uniform-like sampling is much faster in practice

9/12



Experiments: Efficiency in Counting
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Efficiency in Sampling

Sampling Mode Median Runtime (s) Instances solved
Almost-uniform 74.6 641

(with guarantees)

Uniform-like |.24 662

(without theoretical guarantees)

Sampling 500 samples in 1 hour / 668 instances
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Conclusion

o A very efficient tool for bitvector counting
o Future work: other theories. (What are the important questions?)

« Searching for applications
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F Thank You!
=5

github.com/meelgroup/csb/
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