CSB: A Counting and Sampling tool for Bitvectors

Arijit Shaw', Kuldeep S. Meel?

' Chennai Mathematical Institute, India
2University of Toronto, Canada

1/12

Problem Statement

Counting

Bitvector formula F on variables X
Sol(F) set of assighment on X that satisfy F

Determine the value of [Sol(F)|

2/12

Problem Statement

Counting

Bitvector formula F on variables X
Sol(F) set of assighment on X that satisfy F

Determine the value of [Sol(F)|

Also happy with approximation

Pr ['Sﬂ?' <c<(1+e)Sol(F)|| >1-4

2/12

Problem Statement

Counting

Bitvector formula F on variables X
Sol(F) set of assighment on X that satisfy F

Determine the value of [Sol(F)|

Also happy with approximation

Pr ['Sﬂ?' <c<(1+e)Sol(F)|| >1-4

Uniform Sampling

Each invocation will return

o € Sol(F)

Such that, PI‘(O‘) — #

[Sol(F)|

2/12

Problem Statement

Counting

Bitvector formula F on variables X
Sol(F) set of assighment on X that satisfy F

Determine the value of [Sol(F)|

Also happy with approximation

Pr ['Sﬂ?' <c<(1+e)Sol(F)|| >1-4

Uniform Sampling

Each invocation will return

o € Sol(F)

Such that, PI‘(O‘) — #

[Sol(F)|

Also, approximation works

1 (1+¢)
15 o5aim) = Pro) =

2/12

Why counting and sampling in bit-vectors?

4 Not All Bugs Are Created Equal, But)

. uantifving Software Reliabilit
Robust Reachability Can Tell the Q M : y
: via Model-Counting
Difference
Guillaume Girol'®™, Benjamin Farinier?, Samuel Teuber'™) and Alexander Weigl
\ and Sébastien Bardin! / \ /

3/12

Why counting and sampling in bit-vectors?

4 Not All Bugs Are Created Equal, But)

. uantifving Software Reliabilit
Robust Reachability Can Tell the Q M : y
: via Model-Counting
Difference
Guillaume Girol'®™, Benjamin Farinier?, Samuel Teuber'™) and Alexander Weigl
\ and Sébastien Bardin! / \ /

3/12

Why counting and sampling in bit-vectors?

4 Not All Bugs Are Created Equal, But)
Robust Reachability Can Tell the
Difference

Guillaume Girol'®™, Benjamin Farinier?,

\ and Sébastien Bardin! /

4)

Automating the Development of
Chosen Ciphertext Attacks

Gabrielle Beck, Maximilian Zinkus, and Matthew Green,
Johns Hopkins University

. J

_

Quantifying Software Reliability
via Model-Counting

(&)

Samue] Tenber and Alexander Weigl

J

3/12

Why counting and sampling in bit-vectors?

4 Not All Bugs Are Created Equal, But)

. uantifying Software Reliabilit
Robust Reachability Can Tell the Q M : y
; via Model-Counting
Difference
Guillaume Girol' ™), Benjamin Farinier?, Samuel Teuber'™) and Alexander Weigl
\ and Sébastien Bardin' / \ /
4) / INPUT-DIRECTED CONSTRAINED RANDOM \

Automating the Development of SIMULATION

Chosen Ciphertext Attacks Applicant: Cadence Design Systems, Inc., San

Gabrielle Beck, Maximilian Zinkus, and Matthew Green, Jose. CA (US)
Johns Hopkins University '

\ / Inventors: Ali Abdi, IHaila (IL); Guy Eliezer

\ Wolfovitz, Haifa (11.) /

3/12

Current state of the art

Counting

o« SMTApproxMC
« SMC
o SearchMC

4/12

Current state of the art

Counting Sampling

o« SMTApproxMC
« SMC
o SearchMC

4/12

Current state of the art

Counting Sampling
o« SMTApproxMC o SMTSampler
« SMC o GuidedSampler
e SearchMC o MegaSampler

4/12

Current state of the art

Counting Sampling
o« SMTApproxMC o SMTSampler
« SMC o GuidedSampler
e SearchMC o MegaSampler
This work

o Significant recent improvement on CNF counting and sampling

— Can the improvement be translated to bit-vector counting directly?
4/12

Framework for Counting

Bit-vector
F

CSB

-

Bitblasting

CNF
Fbit

Propositional
Model Counting

TechMap (STP)

Implementation

o Built on top of SMT solver STP

o Turned off simplifications and rewrites

ApproxMC

o Added ApproxMC in place of SAT solver backend

Model
Count

5/12

Trying different possibilites

-

CSB

Bitblasting

Propositional
Model Counting

6/12

Trying different possibilites

r CSB ~

Propositional
Model Counting

= J

Bitblasting

o Logic synthesis based
Technology Mapping

- [EMS'07] (STP)
o Tseitin encoding
- [Tse’79] (Boolector)

6/12

Trying different possibilites

CSB

/

Bitblasting

.

Propositional
Model Counting

J

o Logic synthesis based
Technology Mapping

- [EMS'07] (STP)
o Tseitin encoding
- [Tse’79] (Boolector)

Approximate Counter:
o ApproxMC

- Hashing-based counter

Exact counter:
« ADDMC
ExactMC

SharpSAT-TD
Ganak

6/12

Trying different possibilites

CSB

(

Bitblasting

-

Preprocessing

Propositional
Model Counting

_/

o Logic synthesis based
Technology Mapping

- [EMS'07] (STP)
o Tseitin encoding
- [Tse’79] (Boolector)

Approximate Counter:

ApproxMC

- Hashing-based counter

Exact counter:

ADDMC
ExactMC
SharpSAT-TD
Ganak

6/12

Trying different possibilites

CSB

/

Bitblasting Preprocessing

.

Propositional
Model Counting

J

o Logic synthesis based

. e Arjun
Technology Mapping . B] r
- [EMS’07] (STP) - Input-output
bipartition

o Tseitin encoding
- [Tse’79] (Boolector)

Approximate Counter:
o ApproxMC

- Hashing-based counter

Exact counter:
« ADDMC
ExactMC

SharpSAT-TD
Ganak

6/12

Best Performing Settings

Bitblasting + Preprocessing + Model Counting

Results

Tseitin-Arjun-ApproxMC

= |

TechMap-ApproxMC _ B Number of Instances Solved
| ! : I i

Number of Instances Solved

7/12

Framework for Sampling

Bit
vector

-

CSB

Bitblasting

CNF

Fbit

CNF Sampling

CNF
Sample

Sbit

Model
Construction

~

STP

2. CMSGen: Uniform-like sampling

Implementation

o Built on top of SMT solver STP

|. UniGen: Almost-uniform sampling

o Turned off simplifications and rewrites

e Added UniGen and CMSGen in place of SAT solver backend

STP

Bitvector
Sample

S

8/12

Two modes of Sampling

o Almost-uniform sampling (UniGen)

— Sampling with theoretical guarantees. Hashing-based approach.

o Uniform-like sampling (CMSGen)

— No theoretical guarantee, but passes distribution testing based criterions

— CMSGen is made by using random heursitics in CryptoMiniSat

9/12

Two modes of Sampling

o Almost-uniform sampling (UniGen)

— Sampling with theoretical guarantees. Hashing-based approach.

o Uniform-like sampling (CMSGen)

— No theoretical guarantee, but passes distribution testing based criterions

— CMSGen is made by using random heursitics in CryptoMiniSat

Uniform-like sampling is much faster in practice

9/12

Experiments: Efficiency in Counting

Compiled a set of 668 benchmarks
- quantitave model checking

- cryptography

- old literature 3000 -

%

3500 1~ : .
—o— SMTApproxMC

2300

SMTApproxMC 143 T] 2. T— A— — S S——

1000 +

i & : i i : :
500 - -
He : } : : E

200 300 400 500 600
Benchmarks

Instances counted in 1 hour / 668 instances 10/ 12

Experiments: Efficiency in Counting

Compiled a set of 668 benchmarks
- quantitave model checking

- cryptography

- old literature 3000 -

%

3500 1~ : .
—o— SMTApproxMC

2300

SMTApproxMC 143 T] 2. T— A— — S S——

1000 +

i & : i i : :
500 - -
He : } : : E

200 300 400 500 600
Benchmarks

Instances counted in 1 hour / 668 instances 10/ 12

Experiments: Efficiency in Counting

Compiled a set of 668 benchmarks
- quantitave model checking

3500 {- & I T N SV -
- crprography —w—= o5k
- old literature 3000 11 = SMTAPPrOXMC [
2500 s S S N S SO IE SUUTRY SR SR
CSb 647 é/2000 ..
SMTApproxMC 143 =
0? 1500 ..
1000 s A i i R R R T A AR P R S SRS A R R AR R e e e e
500_ ..
0 : : : :
0 100 200 300 400 500 600

Benchmarks

Instances counted in 1 hour / 668 instances 10/ 12

Efficiency in Sampling

Sampling Mode Median Runtime (s) Instances solved
Almost-uniform 74.6 641

(with guarantees)

Uniform-like |.24 662

(without theoretical guarantees)

Sampling 500 samples in 1 hour / 668 instances

11/12

Conclusion

o A very efficient tool for bitvector counting
o Future work: other theories. (What are the important questions?)

« Searching for applications

12/12

Conclusion

o A very efficient tool for bitvector counting
o Future work: other theories. (What are the important questions?)

« Searching for applications

F Thank You!
=5

github.com/meelgroup/csb/

12/12

	Slide: 1
	Slide: 2 (1)
	Slide: 2 (2)
	Slide: 2 (3)
	Slide: 2 (4)
	Slide: 3 (1)
	Slide: 3 (2)
	Slide: 3 (3)
	Slide: 3 (4)
	Slide: 4 (1)
	Slide: 4 (2)
	Slide: 4 (3)
	Slide: 4 (4)
	Slide: 5
	Slide: 6 (1)
	Slide: 6 (2)
	Slide: 6 (3)
	Slide: 6 (4)
	Slide: 6 (5)
	Slide: 7
	Slide: 8
	Slide: 9 (1)
	Slide: 9 (2)
	Slide: 10 (1)
	Slide: 10 (2)
	Slide: 10 (3)
	Slide: 11
	Slide: 12 (1)
	Slide: 12 (2)

