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Game Continued...
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Game Continued...

p = 0.5

n = 3 n = 1 n = 0

Bao, Trivedi, Pathak, Hsu and Roy SAT+SMT’24 Invariants for Probabilistic Programs



Game Continued...

p = 0.3

n = 5 n = 2 n = 3
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Probabilistic Programs

1 <1/p>

2 main (p)

3 x = 0, n = 0

4 while(x == 0)

5 x = bernoulli dist(p)

6 n += 1

7 <n>

Sampling
Statement

Pre Expectation
< preE >

Post Expectation
< postE >

I = n + [x == 0] · 1

p
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Problem Statement

Given a loop while G : P and an expectation postE as input, we aim to develop an
algorithm to automatically synthesize an invariant I.
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Overview

Sampler Data Learner Verifier Verified
Invariants

Counter Examples

Candidate Invariants

Estimation Learning Verification

Expectation

Program
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Estimation

Generate set of initial states

Collect Traces on each initial state

Estimate expectations: multiple runs from same initial state

Generate dataset

Initial States
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Overview

Sampler Data Learner Verifier
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Expectation

Program
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Learning

Feed the dataset to the learner

Learner learns a Model Tree

Leaves encode invariant expression
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Verification

Verify if synthesized invariant satisfies boundary and invariance conditions

Solve an optimization to generate worst counter examples

Generate multiple counter examples
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Experiments

We implemented our apprach in a tool called EXIST (in Python)

Evaluated on 18 benchmarks collected from prior works

Successfully generates verified invariants for 14 benchmarks (taking between 1 to
237 seconds)

Sampling phase dominates the total time
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Experiments : Invariants Synthesized

Program Invariant

int z, bool flip, float p1

while (flip == 0):

d = bernoulli_dist(p1)

if d:

flip = 1

else:

z = z + 1

z + [flip == 0] · (1− p1)/p1

int x , y , z , float p

while 0 < x and x < y :

d = bernoulli_dist(p1)

if d :

x = x + 1

else :

x = x - 1

z = z + 1

rounds += 1

z + [x > 0] · ([y > x ]·
x · (y − x))
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Conclusion

We provided a general algorithm, EXIST (EXpectation Invariant SynThesis), for
learning invariants for probabilistic programs

Exact Invariants
Sub Invariants

We evaluated our implementation of EXIST on a diverse set of benchmarks

https://github.com/JialuJialu/Exist

Kindly acknowledge the following sources for images used in the presentation:
https://favpng.com, https://www.pngwing.com, https://www.pngkey.com, https://www.nicepng.com
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