
Data-Driven Invariant Learning for Probabilistic Programs
Published in CAV’22 (Recieved Distinguished Paper Award)

Jailu Bao 1 Nitesh Trivedi 2 Drashti Pathak 3

Justin Hsu 1 Subhajit Roy 2

1Cornell University, 2Indian Institute of Technology (IIT) Kanpur, 3Amazon

Bao, Trivedi, Pathak, Hsu and Roy SAT+SMT’24 Invariants for Probabilistic Programs



Foolish Game

Mr. Fool

Bao, Trivedi, Pathak, Hsu and Roy SAT+SMT’24 Invariants for Probabilistic Programs



Foolish Game

Mr. Fool

+

Me

Bao, Trivedi, Pathak, Hsu and Roy SAT+SMT’24 Invariants for Probabilistic Programs



Foolish Game

Mr. Fool

+

Me Mr. Annoying

How much do you 
expect to win 
today?

Day 1

Bao, Trivedi, Pathak, Hsu and Roy SAT+SMT’24 Invariants for Probabilistic Programs



Foolish Game

Mr. Fool

+

Me Mr. Annoying

How much do you 
expect to win 
today?

Day 2

Bao, Trivedi, Pathak, Hsu and Roy SAT+SMT’24 Invariants for Probabilistic Programs



Game Continued...

Bao, Trivedi, Pathak, Hsu and Roy SAT+SMT’24 Invariants for Probabilistic Programs



Game Continued...

p = 0.5

n = 3 n = 1 n = 0

Bao, Trivedi, Pathak, Hsu and Roy SAT+SMT’24 Invariants for Probabilistic Programs



Game Continued...

p = 0.3

n = 5 n = 2 n = 3

Bao, Trivedi, Pathak, Hsu and Roy SAT+SMT’24 Invariants for Probabilistic Programs



Probabilistic Programs

1 <1/p>

2 main (p)

3 x = 0, n = 0

4 while(x == 0)

5 x = bernoulli dist(p)

6 n += 1

7 <n>

Sampling
Statement

Pre Expectation
< preE >

Post Expectation
< postE >

I = n + [x == 0] · 1

p

Bao, Trivedi, Pathak, Hsu and Roy SAT+SMT’24 Invariants for Probabilistic Programs



Probabilistic Programs

1 <1/p>

2 main (p)

3 x = 0, n = 0

4 while(x == 0)

5 x = bernoulli dist(p)

6 n += 1

7 <n>

Sampling
Statement

Pre Expectation
< preE >

Post Expectation
< postE >

I = n + [x == 0] · 1

p

Bao, Trivedi, Pathak, Hsu and Roy SAT+SMT’24 Invariants for Probabilistic Programs



Problem Statement

Given a loop while G : P and an expectation postE as input, we aim to develop an
algorithm to automatically synthesize an invariant I.

Bao, Trivedi, Pathak, Hsu and Roy SAT+SMT’24 Invariants for Probabilistic Programs



Overview

Sampler Data Learner Verifier Verified
Invariants

Counter Examples

Candidate Invariants

Estimation Learning Verification

Expectation

Program

Bao, Trivedi, Pathak, Hsu and Roy SAT+SMT’24 Invariants for Probabilistic Programs



Estimation

Generate set of initial states

Collect Traces on each initial state

Estimate expectations: multiple runs from same initial state

Generate dataset

Initial States

Bao, Trivedi, Pathak, Hsu and Roy SAT+SMT’24 Invariants for Probabilistic Programs



Estimation

Generate set of initial states

Collect Traces on each initial state

Estimate expectations: multiple runs from same initial state

Generate dataset

}
}
}

}
Initial States

Bao, Trivedi, Pathak, Hsu and Roy SAT+SMT’24 Invariants for Probabilistic Programs



Estimation

Generate set of initial states

Collect Traces on each initial state

Estimate expectations: multiple runs from same initial state

Generate dataset

}
}
}

}
Initial States

Bao, Trivedi, Pathak, Hsu and Roy SAT+SMT’24 Invariants for Probabilistic Programs



Overview

Sampler Data Learner Verifier

Estimation Learning

Expectation

Program

Bao, Trivedi, Pathak, Hsu and Roy SAT+SMT’24 Invariants for Probabilistic Programs



Learning

Feed the dataset to the learner

Learner learns a Model Tree

Leaves encode invariant expression

Bao, Trivedi, Pathak, Hsu and Roy SAT+SMT’24 Invariants for Probabilistic Programs



Learning

Feed the dataset to the learner

Learner learns a Model Tree

Leaves encode invariant expression

0

x = 0?

Model Tree

Bao, Trivedi, Pathak, Hsu and Roy SAT+SMT’24 Invariants for Probabilistic Programs



Learning

Feed the dataset to the learner

Learner learns a Model Tree

Leaves encode invariant expression

0

x = 0?

Model Tree

Bao, Trivedi, Pathak, Hsu and Roy SAT+SMT’24 Invariants for Probabilistic Programs



Overview

Sampler Data Learner Verifier Verified
Invariants

Counter Examples

Candidate Invariants

Estimation Learning Verification

Expectation

Program

Bao, Trivedi, Pathak, Hsu and Roy SAT+SMT’24 Invariants for Probabilistic Programs



Verification

Verify if synthesized invariant satisfies boundary and invariance conditions

Solve an optimization to generate worst counter examples

Generate multiple counter examples

Bao, Trivedi, Pathak, Hsu and Roy SAT+SMT’24 Invariants for Probabilistic Programs



Verification

Verify if synthesized invariant satisfies boundary and invariance conditions

Solve an optimization to generate worst counter examples

Generate multiple counter examples

Bao, Trivedi, Pathak, Hsu and Roy SAT+SMT’24 Invariants for Probabilistic Programs



Verification

Verify if synthesized invariant satisfies boundary and invariance conditions

Solve an optimization to generate worst counter examples

Generate multiple counter examples

Bao, Trivedi, Pathak, Hsu and Roy SAT+SMT’24 Invariants for Probabilistic Programs



Experiments

We implemented our apprach in a tool called EXIST (in Python)

Evaluated on 18 benchmarks collected from prior works

Successfully generates verified invariants for 14 benchmarks (taking between 1 to
237 seconds)

Sampling phase dominates the total time

Bao, Trivedi, Pathak, Hsu and Roy SAT+SMT’24 Invariants for Probabilistic Programs



Experiments

We implemented our apprach in a tool called EXIST (in Python)

Evaluated on 18 benchmarks collected from prior works

Successfully generates verified invariants for 14 benchmarks (taking between 1 to
237 seconds)

Sampling phase dominates the total time

Bao, Trivedi, Pathak, Hsu and Roy SAT+SMT’24 Invariants for Probabilistic Programs



Experiments

We implemented our apprach in a tool called EXIST (in Python)

Evaluated on 18 benchmarks collected from prior works

Successfully generates verified invariants for 14 benchmarks (taking between 1 to
237 seconds)

Sampling phase dominates the total time

Bao, Trivedi, Pathak, Hsu and Roy SAT+SMT’24 Invariants for Probabilistic Programs



Experiments

We implemented our apprach in a tool called EXIST (in Python)

Evaluated on 18 benchmarks collected from prior works

Successfully generates verified invariants for 14 benchmarks (taking between 1 to
237 seconds)

Sampling phase dominates the total time

Bao, Trivedi, Pathak, Hsu and Roy SAT+SMT’24 Invariants for Probabilistic Programs



Experiments : Invariants Synthesized

Program Invariant

int z, bool flip, float p1

while (flip == 0):

d = bernoulli_dist(p1)

if d:

flip = 1

else:

z = z + 1

z + [flip == 0] · (1− p1)/p1

int x , y , z , float p

while 0 < x and x < y :

d = bernoulli_dist(p1)

if d :

x = x + 1

else :

x = x - 1

z = z + 1

rounds += 1

z + [x > 0] · ([y > x ]·
x · (y − x))

Bao, Trivedi, Pathak, Hsu and Roy SAT+SMT’24 Invariants for Probabilistic Programs



Conclusion

We provided a general algorithm, EXIST (EXpectation Invariant SynThesis), for
learning invariants for probabilistic programs

Exact Invariants
Sub Invariants

We evaluated our implementation of EXIST on a diverse set of benchmarks

https://github.com/JialuJialu/Exist

Kindly acknowledge the following sources for images used in the presentation:
https://favpng.com, https://www.pngwing.com, https://www.pngkey.com, https://www.nicepng.com

Bao, Trivedi, Pathak, Hsu and Roy SAT+SMT’24 Invariants for Probabilistic Programs

https://github.com/JialuJialu/Exist


Conclusion

We provided a general algorithm, EXIST (EXpectation Invariant SynThesis), for
learning invariants for probabilistic programs

Exact Invariants
Sub Invariants

We evaluated our implementation of EXIST on a diverse set of benchmarks

https://github.com/JialuJialu/Exist

Kindly acknowledge the following sources for images used in the presentation:
https://favpng.com, https://www.pngwing.com, https://www.pngkey.com, https://www.nicepng.com

Bao, Trivedi, Pathak, Hsu and Roy SAT+SMT’24 Invariants for Probabilistic Programs

https://github.com/JialuJialu/Exist


Conclusion

We provided a general algorithm, EXIST (EXpectation Invariant SynThesis), for
learning invariants for probabilistic programs

Exact Invariants
Sub Invariants

We evaluated our implementation of EXIST on a diverse set of benchmarks

https://github.com/JialuJialu/Exist

Kindly acknowledge the following sources for images used in the presentation:
https://favpng.com, https://www.pngwing.com, https://www.pngkey.com, https://www.nicepng.com

Bao, Trivedi, Pathak, Hsu and Roy SAT+SMT’24 Invariants for Probabilistic Programs

https://github.com/JialuJialu/Exist


Conclusion

We provided a general algorithm, EXIST (EXpectation Invariant SynThesis), for
learning invariants for probabilistic programs

Exact Invariants
Sub Invariants

We evaluated our implementation of EXIST on a diverse set of benchmarks

https://github.com/JialuJialu/Exist

Kindly acknowledge the following sources for images used in the presentation:
https://favpng.com, https://www.pngwing.com, https://www.pngkey.com, https://www.nicepng.com

Bao, Trivedi, Pathak, Hsu and Roy SAT+SMT’24 Invariants for Probabilistic Programs

https://github.com/JialuJialu/Exist

