
Using Model Counting for Game
Development: Quantifying
Difficulty of 2D Platformer Levels
for Diverse Playable Characters

Aditya Patil (MIT Vishwashanti Gurukul,India)
Mark Santolucito (Barnard College,USA)

Problem Statement
• Game designers in the past have struggled

to strike a balance in generating levels for
diverse playable characters.

Hypothesis
• Using model counting, evaluation of

different levels will become easier for
diverse playable characters.

Super Mario Level Balance

• Dynamic Difficulty Adjustments: The levels adapt to player
performance offering extra power-ups or minimizing challenges
when players struggle.

• Player Experience: Gameplay elements like enemy behavior or
available items adjust based on how well or poorly the player is
performing.

• Balanced Skill Levels: Ensures that both beginners and
advanced players can enjoy the game by modifying difficulty to
suit the player’s needs.

Proof of Concept

• Before we started with evaluating a 2D
platformer level difficulty we tested the model
counting constraints with a simple game of
tic-tac-toe

Tic Tac Toe Test

During this test I set up 3 different constraints:

● Cell Occupancy: Each cell must contain either an "X" or
an "O"but not both.

● Turn Alternation: The number of "X’s” and "O’s" on the
board must differ by at most 1 to ensure correct turn
alternation.

● Single Winner: Only one player can win, either "X" or
"O", but not both simultaneously.

Why Satisfiability modulo theories (SMT)
Solvers Are Perfect for Assessing Game
Level Difficulty
• SMT solvers are great for figuring out game level

difficulty because they can handle many complex
rules and balance different factors effectively.
They help you model different aspects of the
game level, making it easier to see how hard the
level is.

Why Z3 was chosen?

• Z3 is an efficient SMT solver
• The usage of Z3 with Python allows for quick

prototyping and easy demonstration of formal
methods in tic-tac-toe

• Z3 was chosen over other alternatives was due to
its strong community support for a first time
explorer like me along with limited time
preventing a thorough evaluation of other
solvers.

In-Depth • Tic tac toe is a solved game and the optimal strategy is
already known

• Z3 isn’t the best tool for analyzing tic-tac-toe but it does us
a proof of concept

• Our goal with Z3 is to later extend this approach to a 2D
platformer

Constraint #0
Setting Up the
Grid

• This code creates two 3x3 matrices, X and O, where
each element is a Boolean variable representing
whether player X or player O occupies a specific cell
on the Tic-Tac-Toe board.

• The solver then adds constraints ensuring that each
cell on the board is either occupied by X or O (but not
both), enforcing that no cell can be occupied by both
players simultaneously.

Constraint #1:
Defining Who
Starts First

• These lines add constraints to ensure that the
number of X moves is either equal to or one
more than the number of O moves, enforcing the
rule that players take turns and X always goes
first.

Constraint #2:
Defining the
Winning Condition

• This function “is_winner”` checks if a given player (X or
O) has won the game by forming a complete row,
column, or diagonal. It returns `True` if any of these win
conditions are met.

• The variables “X_wins” and “O_wins” are then set to
indicate whether player X or player O has won,
respectively.

Constraint #3:
Avoiding
Pre-Existing
Solutions

• The avoid_solution function creates constraints to avoid
a specific Tic-Tac-Toe board configuration that has
already been found.

• It does this by comparing each cell's value in the
current model (board) and generating a constraint that
forces at least one cell to have a different value in the
next solution, ensuring uniqueness.

Exploring all
Possible Solutions

• The “count_solutions” function counts the total number
of valid Tic-Tac-Toe board configurations.

• It does this by repeatedly checking if the current
constraints are satisfiable “sat”, incrementing a counter
each time a valid configuration is found. It then adds a
constraint to avoid the current solution using
“avoid_solution”, ensuring all unique configurations are
counted.

Assessing Difficulty Level
• `solver.push()` saves the current state of the solver's

constraints. `

• totalPlays = count_solutions()` counts the total number of
valid board configurations, and this number is printed.

• `solver.pop()` restores the solver to the previous state before
any additional constraints were added.

• The process repeats twice, first with an added constraint for
O winning (`solver.add(O_wins)`) to count `oWins`, and then
with a constraint for X winning (`solver.add(X_wins)`) to count
`xWins`

• Finally, the difficulty for each player is calculated by
determining the proportion of winning configurations relative
to the total, where a lower proportion of winning
configurations indicates a higher difficulty. These difficulty
levels are then printed.

Test Results

Conclusion from this Test

• The higher difficulty for O indicates that it is more challenging for O
to win, which aligns with the first-move advantage generally seen in
Tic-Tac-Toe.

• The Z3 Solver is highly effective for solving combinatorial problems
like Tic-Tac-Toe, providing precise results for various configurations.

• This test proves that we can use model counting to assess game
difficulty for different playable characters with certain constraints.

2D Platformer Test

• Keeping the previous test in mind, we did the
same thing for a simple 2D platformer with all of
the initial experiments done with setting up
constraints.

Grid Setup

These lines of code:

Defines the grid dimensions: 2 rows, 4 columns

Set number of moves to 5

Creates a 3D grid `Tank` with Boolean variables for
each cell and time step

Initializes the Z3 solver

Constraint #1 and #2

• Set initial Tank position: Ensure Tank starts at (1,
0) at time step 0.

• Unique position constraint: Ensure Tank is in only
one cell per time step.

Movement Rules and Goal
Position

• Movement Constraints: Ensure Tank moves right
or stays in place.

• Goal Position: Ensure Tank reaches (1, 2) at final
time step.

Counting Valid Paths for the Tank

• Count Valid Paths: The code than iteratively
solves the constraints to find all valid paths for
the Tank.

• Exclude Solutions: Adds a constraint to exclude
the current solution from future checks.

• Return Path Count: Returns the total number of
valid paths found and prints the number

Test Result

Future Work

• The same method can be applied for finding the
valid number of paths for an agile character

• Ways to optimize the model counting solution
• Using different factors to get level difficulty

THANK YOU

