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SAT: determine if a Boolean formula in Conjunctive Normal Form (CNF) is satisfiable

The original NP-Complete problem

§ The famous Cook-Levin theorem (early 70s)

SAT has exponential complexity unless P = NP

P = NP (SAT): frequently called the most important outstanding question in CS

§ If it is easy to check that a solution to a problem is correct, is it also easy to solve the problem? 

§ One of the 7 Clay Millennium Prize Problems – worth $1,000,000

F = (a Ú b) Ù (¬a Ú ¬b Ú c)
clause #1 clause #2

Literals



PEG PDS DDI

Introduction

8/20/24
3

SAT is an unresolved mystery!

Yet, SAT solvers are scalable widely used tools

Main goals for today: 
§ Explain how modern SAT solvers work

§ Convey intuition why they work in practice

§ Provide examples of applying SAT
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SAT Applications
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SAT Application Examples
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Optimization with 
SAT@
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SAT Resources
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SAT Association: http://satassociation.org/ 

SAT Conferences: http://www.satisfiability.org/

SAT Competitions: http://www.satcompetition.org/ 

SATLive: http://www.satlive.org/

http://satassociation.org/
http://www.satisfiability.org/
http://www.satcompetition.org/
http://www.satlive.org/
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Why am I Interested in SAT?
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2002: stumbled upon SAT and completed my Master thesis about it (Hebrew University)
§ Jerusat – won the Industrial, SAT category at SAT Competition 2004

2003: joined Intel
§ Been developing & internally deploying SAT and SAT-based solvers (SMT, Model Checkers) ever since

§ Till 2014: working on SAT-based validation as the rest of the semiconductor industry

§ Since 2014: optimization (place & route, scheduling), test generation, physical design, lithography, …

2009: PhD about SAT (Tel-Aviv University)

2023: joined the Technion’s Data and Decision Sciences faculty as a part-time research fellow
§ Looking for students!

Most SW is closed-sourced, but lately I was able to participate in some open-source projects:
§ 2018: MapleLCMDistChronoBT SAT solver – won the SAT Competition 2018

§ 2019–2024 : TT-Open-WBO-Inc MaxSAT solver – multiple medals in MaxSAT Evaluations

§ 2022: Intel released my new SAT solver “Intel® SAT Solver” (IntelSAT), tuned for optimization flows
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How does a conflict-driven SAT solver work?
§ The core: backtrack search, Boolean Constraint Propagation (BCP), conflict analysis

§ Follow the first SAT Competition winners (from Chaff till Minisat)

Applying SAT by example 

§ Paradigms: incremental SAT solving, SAT-based local search, example encodings

§ Applications: Bounded Model Checking (BMC), proof-based abstraction refinement, bug 
hunting, anytime MaxSAT

Advanced core SAT algorithms
§ Follow the SAT Competition winners after Minisat & discussion about incremental SAT
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SAT Solving
§ Parallel SAT solving (divide & conquer, portfolio, cloud)

§ Non-CNF formulas

§ Deserves much more attention: inprocessing, encodings

SAT-based paradigms and solvers
§ Satisfiability Modulo Theories (SMT)

§ Quantified Boolean Formula (QBF)

§ Model counting

§ AllSAT – enumerating all solutions

§ Model sampling

…
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SAT Fundamentals: Backtrack Search
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The baseline algorithm in modern SAT solvers is backtrack search

Called DPLL or DLL
Davis, Martin; Logemann, George; Loveland, Donald: "A Machine Program for Theorem 
Proving". Communications of the ACM. 5 (7): 394–397. (1961).

Davis, Martin; Putnam, Hilary: A computing procedure for quantification theory. Journal of the ACM 7 (1960)

https://archive.org/details/machineprogramfo00davi
https://archive.org/details/machineprogramfo00davi
https://en.wikipedia.org/wiki/Communications_of_the_ACM
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Boolean Constraint Propagation 
(BCP): after a decision, apply the 
unit clause rule till fixed-point

0

10

Carry out backtrack search.
Stop when a model is found

0

The unassigned literal c1 must be  implied

From Enumeration to DPLL
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F = (a Ú b) Ù (¬a Ú ¬b Ú c)
clause #1 clause #2

Literals

a

b b

c c c c

0 1

0 0

00 001

1 1

1 1 1

a

b b

c c c

0 1

0 0

0 00

1 1

1 1 1

a

b

c

Stop when a clause 
turns UNSAT

c2c1 c3

c2c1 c3

Falsified literal: Satisfied literal: Unassigned literal:

A unit clause -- one unassigned, rest falsified:

1

a

b

c

0

0

The unit clause rule: the unassigned literal in a unit clause must be 1

Implied in parent clause #1:
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The Mystery of SAT Solver Scalability
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DPLL: backtrack search with BCP until a model is found (SAT) or completion (UNSAT)

DPLL could handle formulas with <2,000 clauses

Modern SAT solvers cope with industrial instances of 100,000,000’s clauses

The introduction of Conflict-Driven-Clause-Learning (CDCL) or, simply, 
Conflict-driven Solving was the birth of modern highly-scalable SAT solving

Learn from conflicts to drive & prune backtrack search

a

b b

c c c c

0 1

0 0

00 001

1 1

1 1 1
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CDCL: the Intuitive Principles
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Learning and pruning 
§ Block already explored sub-spaces

Locality
§ Focus the search on the relevant data 

§ Learn strong clauses from the local context

Well-engineered data structures
§ Extremely fast Boolean Constraint Propagation (BCP)

Beyond CDCL
§ Inprocessing

§ Local search integration
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Basic CDCL Algorithm
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Preprocess()                                     // Simplify the formula

While (true)
§ Literal l = Decide()    // Choose the next literal to assign 
§ BCP(l)      // Apply the unit clause rule till fixed point
§ If (conflict)

§ ConflictAnalysisLoop()  // Learn a new conflict clause(s), backtrack and flip a variable
§ If (learned an empty clause)

§ Return UNSAT
§ If (all the variables are assigned)

§ Return SAT
§ Occasionally, restart
§ Occasionally, delete conflict clauses
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Conflict-driven SAT Solving: Seminal Work
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1996: GRASP by Joao P. Marques-Silva and Karem A. Sakallah

João P. Marques Silva, Karem A. Sakallah: GRASP - a new search algorithm for satisfiability. ICCAD 1996: 220-227

2001: Chaff by Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang and Sharad Malik

Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, Sharad Malik: Chaff: Engineering an Efficient SAT 
Solver. DAC 2001: 530-535

https://dblp.org/db/conf/iccad/iccad1996.html
https://dblp.org/db/conf/dac/dac2001.html
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h@5(C5)

b@2

c@3

d@4

e@5

f@5(C6)

g@5(C3)

a@1

Decision Level 4

Chaff’s Conflict Analysis
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C1= ¬a Ú f Ú g

C2= ¬a Ú f Ú ¬g

C3= ¬c Ú ¬f Ú g

C4= ¬b Ú ¬f Ú ¬g

C5= ¬e Ú h

Decision Level 1

Decision Level 2

Decision Level 3

Decision Level 5

Decision variable/literal

C6= ¬e Ú ¬h Ú f

Implied literal

Conflict 
analysis starts
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Implication Graphs and Conflict Analysis
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Every vertex corresponds to an assigned literal

A decision literal has 0 incoming edges

A literal implied in clause C has |C|-1 incoming edges from every other literal in C

We only need the strongly connected component of the conflict

h@5(C5)

C1= ¬a Ú f Ú g

C2= ¬a Ú f Ú ¬g

C3= ¬c Ú ¬f Ú g

C4= ¬b Ú ¬f Ú ¬g

C5= ¬e Ú h

a@1
b@2

c@3

d@4

e@5

g@5

¬ g@5

f@5

c@3

b@2

C3

C3

C4

C6

C4

Implication graph

f@5(C6)

C6= ¬e Ú ¬h Ú f

h@5
C5 C6

g@5(C3)

e@5
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Implication Graphs and Conflict Analysis
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Conflict cut
§ Right (conflict): the two conflicting implications
§ Left (reason): all the decision literals (roots)

Conflict clause 
§ Corresponds to every cut: includes one appearance of  ¬l for every edge làr in the cut
§ Learning a conflict clause prevents the conflict from reappearing

h@5(C5)

C1= ¬a Ú f Ú g

C2= ¬a Ú f Ú ¬g

C3= ¬c Ú ¬f Ú g

C4= ¬b Ú ¬f Ú ¬g

C5= ¬e Ú h

a@1
b@2

c@3

d@4

e@5

g@5

¬ g@5

f@5

c@3

b@2

C3

C3

C4

C6

C4

Implication graph

f@5(C6)

C6= ¬e Ú ¬h Ú f

h@5
C5 C6

g@5(C3)

e@5

¬f Ú ¬c Ú ¬b

¬h Ú ¬e Ú ¬c Ú ¬b

¬e Ú ¬c Ú ¬b
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A UIP cut has exactly one literal l of the last level on the reason side of its edges
§ l is a Unique Implication Point (UIP): a literal sufficient to imply the conflict at the last level

§ A conflict clause is a UIP clause if it corresponds to a UIP cut

UIP’s are ordered starting from the conflict

h@5(C5)

C1= ¬a Ú f Ú g

C2= ¬a Ú f Ú ¬g

C3= ¬c Ú ¬f Ú g

C4= ¬b Ú ¬f Ú ¬g

C5= ¬e Ú h

a@1
b@2

c@3

d@4

e@5

f@5(C6)

C6= ¬e Ú ¬h Ú f

g@5(C3)

g@5

¬ g@5

f@5

c@3

b@2

C3

C3

C4

C6

C4

h@5
C5

e@5

¬f Ú ¬c Ú ¬b: 1UIP

¬h Ú ¬e Ú ¬c Ú ¬b

¬e Ú ¬c Ú ¬b: 2UIP

C6

Implication graph
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h@5(C5)

f@1(C8)
c@3

Chaff’s Conflict Analysis
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¬f@3(C7)

C1= ¬a Ú f Ú g

C2= ¬a Ú f Ú ¬g

C3= ¬c Ú ¬f Ú g

C4= ¬b Ú ¬f Ú ¬g

C5= ¬e Ú h

a@1
b@2

c@3

d@4

e@5

g@5

¬ g@5

f@5e@5

c@3

b@2

1UIP

C7 = ¬f Ú ¬c Ú ¬b

a@1

b@2

C3

C3

C4

C6

C4

g@3

¬ g@3

a@1

¬ f@3

C1

C1

C2

C2

1UIP

C8 = f Ú ¬a

a@1

c@3

b@2

- Learn a falsified asserting clause C=[c1
@d, c2

@b<d , c3
@£b , … , c|C|

@£ b]
- 1UIP clause: fewest variables out of all UIP clauses (UIP clauses have one variable @ d)

- Backtrack to level b: called Non-Chronological Backtracking (NCB) à C becomes unit
- Flip & imply c1 in its parent C and run BCP

NCB to 3

NCB to 1

Implication graph f@5(C6)

g@3(C1)
C6= ¬e Ú ¬h Ú f

h@5
C5

C6

g@5(C3)

¬c@2

¬b@3

¬e@4

d@5

g@6

h@7

C7

C7

Conflict analysis 
completed
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b@2

a@1

g@3

GRASP’s Conflict Analysis
a@1

b@2

c@3

d@4

e@5

f@5(C5)

g@5

¬g@5

f@5e@5

c@3
1UIP

C6 = ¬f Ú ¬c Ú ¬b

C3

C3

C4

C5 C4

2UIP à 1UIP
C7 = ¬e Ú f

¬f@3(C6)

a@1

b@2

c@3

d@4 f@1(C8)a@1

¬f@3

C1

C1

C2

C2

1UIP

c@3

b@2

2UIPà1UIP

C1= ¬a Ú f Ú g

C2= ¬a Ú f Ú ¬g

C3= ¬c Ú ¬f Ú g

C4= ¬b Ú ¬f Ú ¬g

C5= ¬e Ú f

b@2

C9 = ¬c Ú ¬b Ú ¬f

C8 = f Ú ¬a

- Backtrack to the conflict level d: called NCB in GRASP (unnamed today)
- Learn a falsified asserting 1UIP clause C=[c1

@d, c2
@b<d , c3

@£b , … , c|C|
@£ b]

- Learn a clause per every other UIP of the last level
- Backtrack to level d-1: called Chronological Backtracking (CB) today.
- Flip & imply c1 in its parent C and run BCP

CB to 4

¬g@3

Backtrack to 
conflict level 3

CB to 2

In GRASP, f  is a special kind of a “flipped” 
decision variable at level 5, but GRASP 
learns as if ¬f were implied at level 3

g@5(C3)

g@3(C1)

¬g@1(C4)

¬c@1(C3)

d@3

¬e@4

Conflict analysis 
completed
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Up-to-date Conflict Analysis Algorithm 
Covers GRASP & Chaff & Modern Solvers
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1. Backtrack before conflict analysis: backtrack to the conflict level d, if required
§ Required in GRASP
§ Not required in Chaff: current decision level º conflict level

2. Learn an asserting clause C=[c1
@d, c2

@b<d, c3@@£b, …, ci@@£b, …, c|C|
@£b]

§ 1UIP clause in both GRASP & Chaff
§ Return UNSAT, if the clause is empty

3. Optionally, learn other clauses
§ GRASP: a clause for every other UIP of the conflict decision level

4. Backtrack: backtrack to a level in [b, b+1, …, d-1]  -- renders the asserting clause unit
§ GRASP -- always d-1: Chronological Backtracking (CB) in today’s terminology
§ Chaff -- always b: Non-Chronological Backtracking (NCB) in today’s terminology

5. Flip c1 by implying it in C and run BCP
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Boolean Constraint Propagation (BCP) Essentials
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BCP is carried out after every decision and flip and consumes 80-90% run-time

What?
§ Identify and propagate in unit clauses (performance)

§ Identify and report any conflicts (correctness)

How?
§ Visit a clause when one of its watched literals is falsified

§ Every literal l holds a Watch List (WL) with all the clauses where l is watched

c2c1 c3

c2c1 c3

c2c1 c3

Falsified literal: Satisfied literal: Unassigned literal:
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Efficient Data Structure for BCP

- GRASP watched all the literals in every clause

- It is sufficient to watch two non-falsified literals: SATO’s Head/Tail!
- Watching: visiting during BCP

      Hantao Zhang: SATO: An Efficient Propositional Prover. CADE 1997: 272-275

- Chaff’s 2WL: watching the first two literals – no need to visit during backtracking!

- as long as: decision-level(falsified watch) ≥ decision-level(falsified non-watch)

- Caching one literal inside the watches & inlining binary clauses
      Sörensson, N., Eén, N.: MiniSAT 2.1 and MiniSAT++ 1.0 - SAT race Editions. SAT, Competitive Event Booklet (2008) (caching one literal)
      Geoffrey Chu, Aaron Harwood, Peter J. Stuckey: Cache Conscious Data Structures for Boolean Satisfiability Solvers. J. Satisf. Boolean Model. 
Comput. 6(1-3): 99-120 (2009) (caching one literal & inlining binary clauses)

8/20/24

c4 c5 c7c2c1 c3 c6

Falsified literal: Satisfied literal:

Unassigned literal:

Unknown literal:

Non-falsified literal: Non-satisfied literal:

c4 c5 c7c3c2 c6c1

https://dblp.org/db/conf/cade/cade97.html
https://dblp.org/db/journals/jsat/jsat6.html
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BCP assuming NCB
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For every satisfied literal l  in the literal stack P (literals to be propagated)
§ For <h ¹ ¬l Î C, C> Î WL(¬l)      h: cached literal; C: the visited clause, where c1º¬l or c2º¬l

§ If h is satisfied: continue                     C is satisfied: no conflict, C isn’t unit à skip C
Clause visit: assume WLOG c2 º ¬l
§ If c1 is satisfied: continue
§ If a non-falsified k ¹ c1ÎC exists

– Swap(C, k, ¬l)
– Remove <h ¹ ¬l Î C, C> from WL(¬l)
– Add <h’ ¹ k Î C, C> to WL(k)             h’: heuristical

§ Else (unit or falsified)
– If c1 is unassigned, imply c1 and add c1 to P (unit)       

– If c1 is falsified, report a conflict and return C (falsified)

c4c2 º ¬l c3c1

c4c2 º ¬l c3c1

Falsified literal: Satisfied literal:

Unassigned literal:

Unknown literal:

c4 º kc2 º ¬l c3c1

Non-falsified literal:

c4 º ¬lc2º k c3c1

c4c2 º ¬l c3c1

c4c2 º ¬l c3c1

c4c2 º ¬l c3c1

Non-satisfied literal:
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How does a conflict-driven SAT solver work?
§ The core: backtrack search, Boolean Constraint Propagation (BCP), conflict analysis

§ Follow the first SAT Competition winners (from Chaff till Minisat)

Applying SAT by example 

§ Paradigms: incremental SAT solving, SAT-based local search, example encodings

§ Applications: Bounded Model Checking (BMC), proof-based abstraction refinement, bug 
hunting, anytime MaxSAT

Advanced core SAT algorithms
§ Follow the SAT Competition winners after Minisat & discussion about incremental SAT
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SAT Competition & Race Winners (CNF & Appl. & Seq. & Non-incr. & All-inst.)
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2002

zChaff

2003

Forklift

2004

zChaff

2005

SatELite
GTI

MiniSat-based:

Armin Biere’s& 
derived:

Others:

2006

RSAT

2007

MiniSat MiniSat

2008

Precosat

2009 2010

Crypto
MiniSat

2011

Glucose

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Glucose Lingeling Lingeling abcdSAT Maple
COMSPS

Maple
LCMDist

Maple
LCMDist
ChronoBT

Maple
LCMDist
ChronoBT
DLv3

Kissat KissatMAB

Moskewicz
Madigan
Zhao
Zhang
Malik

Goldberg
Novikov

Moskewicz
Madigan
Zhao
Zhang
Malik

Eén
Sörensson

Eén
Sörensson

Pipatsrisa
wat
Darwiche

Eén
Sörensson

Biere
Soos

Audemard
Simon

Audemard
Simon

Biere Biere Chen
Liang
Oh
Ganesh
Czarnecki
Poupart

Xiao
Luo
Li
Manya
Lu

Nadel
Ryvchin Kochemazov

Zaikin
Kondratiev
Semenov

Biere
Fazekas 
Fleury 
Heisinger

Cherif
Habet
Terrioux

2022 2023

KissatMAB-HyWalk

Zheng 
He
Chen 
Zhou 
Li

SBVA-CaDiCaL

Haberlandt
Green
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Chaff
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Covered:
§ Conflict analysis

§ BCP

To cover:

§ Variable State Independent Decaying Sum (VSIDS) decision heuristic 
§ The first conflict-driven decision heuristic

§ Conflict clause deletion

§ Restarts
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Variable State Independent Decaying Sum (VSIDS)

Each literal l has a counter S(l), initialized to 0 

For every new clause C=[c1, c2, …, cn], S(ci) is incremented for every ciÎC 
Including initial and conflict clauses

The (unassigned) variable and polarity with the highest counter is chosen

Ties are broken randomly 

Periodically (once in 256 conflicts), all the counters are halved.
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VSIDS Example

Literal Score
a 0
¬a 0
b 0
¬b 0
c 0
¬c 0
d 0
¬d 0
e 0
¬e 0
… …

Heuristic-related data Search tree

Conflicts till now: 0
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VSIDS Example

Literal Score
a 4
¬a 5
b 3
¬b 3
c 2
¬c 3
d 2
¬d 4
e 2
¬e 6
… …

Heuristic-related data Search tree

Conflicts till now: 0

Count literal 
appearances 
in the initial 
formula
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VSIDS Example

Literal Score
a 4
¬a 5
b 3
¬b 3
c 2
¬c 3
d 2
¬d 4
e 2
¬e 6
… …

Heuristic-related data Search tree

Conflicts till now: 0

Pick a literal 
with maximal 
score

¬eà{h,i}
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VSIDS Example

Literal Score
a 4
¬a 5
b 3
¬b 3
c 2
¬c 3
d 2
¬d 4
e 2
¬e 6
… …

Heuristic-related data Search tree

Conflicts till now: 0

¬eà{h,i}

¬aà{d}
Pick an 
unassigned 
literal with 
maximal 
score
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VSIDS Example

Literal Score
a 4
¬a 5
b 3
¬b 3
c 2
¬c 3
d 2
¬d 4
e 2
¬e 6
… …

Heuristic-related data Search tree

Conflicts till now: 0

¬eà{h,i}
Conflict

¬aà{d}
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VSIDS Example

Literal Score
a 4à5
¬a 5
b 3
¬b 3à4
c 2à3
¬c 3
d 2
¬d 4
e 2
¬e 6
… …

Heuristic-related data Search tree

Conflicts till now: 1

¬h Ú a Ú c Ú ¬b Ú k

Increment 
scores for 
conflict clause 
literals

¬eà{h,i}

¬aà{d}
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VSIDS Example

Literal Score
a 10
¬a 12
b 18
¬b 6
c 12
¬c 6
d 2
¬d 6
e 16
¬e 6
… …

Heuristic-related data Search tree

Conflicts till now: 256

Assume the  threshold 
of 256 is reached

¬eà{h,i}

¬aà{d}
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VSIDS Example

Literal Score
a 10à5
¬a 12à6
b 18à9
¬b 6à3
c 12à6
¬c 6à3
d 2à1
¬d 6à3
e 16à8
¬e 6à3
… …

Heuristic-related data Search tree

Conflicts till now: 256

Halve the 
scores

¬eà{h,i}

¬aà{d}
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VSIDS vs. Static Heuristics

Pre-Chaff static heuristics
§ Go over all clauses that are not satisfied 

§ Compute some function f(a) for each literal—based on frequency

§ Choose literal with maximal f(a)

VSIDS was a breakthrough
§ Extremely low overhead
§ Conflict-driven à dynamic and local

§ Based on recent conflicts
§ Focuses the search to learn from the local context
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Conflict Clause Deletion
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Maintaining too many clauses slows down the solver

D. Gelperin: Deletion-directed search in resolution-based proof procedures, in Proc. of the 3rd Int. Joint Conf. on 
Artificial Intelligence (1973), pp. 47–50. 

Chaff’s strategy:
§ Mark a clause for deletion, once 100-200 literals become unassigned
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Restarts
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C. P. Gomes, B. Selman and H. A. Kautz: Boosting combinatorial search through randomization, in Proc. of AAAI 
(1998), pp. 431–437 

Refocus the search by starting from important variables

Chaff: restart every 700 conflicts
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Chaff
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Preprocess() 

While (true)
§ Literal l = Decide()     // VSIDS
§ BCP(l)       // 2WL
§ If (conflict)

§ ConflictAnalysisLoop()   // 1UIP + non-chronological backtracking
§ If (learned an empty clause)

§ Return UNSAT
§ If (all the variables are assigned)

§ Return SAT
§ Occasionally, restart                                     // Every 700 conflicts
§ Occasionally, delete conflict clauses        // Mark for deletion, when 100-200 lit’s are unassigned
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SAT Competition & Race Winners (CNF & Appl. & Seq. & Non-incr. & All-inst.)
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2002

zChaff

2003

Forklift

2004

zChaff

2005

SatELite
GTI

2006

RSAT

2007

MiniSat MiniSat

2008

Precosat

2009 2010

Crypto
MiniSat

2011

Glucose

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Glucose Lingeling Lingeling Maple
COMSPS

Maple
LCMDist

Maple
LCMDist
ChronoBT

Maple
LCMDist
ChronoBT
DLv3

Kissat KissatMAB

Moskewicz
Madigan
Zhao
Zhang
Malik

Goldberg
Novikov

Moskewicz
Madigan
Zhao
Zhang
Malik

Eén
Sörensson

Eén
Sörensson

Pipatsrisa
wat
Darwiche

Eén
Sörensson

Biere
Soos

Audemard
Simon

Audemard
Simon

Biere Biere Chen
Liang
Oh
Ganesh
Czarnecki
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Xiao
Luo
Li
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Lu

Nadel
Ryvchin Kochemazov
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Biere
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Forklift: industrial closed-source solver (Cadence)

We discuss Forklift’s direct ancestor BerkMin (won Handmade, SAT category at SC’02)

Goldberg, Novikov: BerkMin: A fast and robust SAT-solver,  DATE, 2002.

Clause deletion is based on “age” and size. The strategy, simplified:
§ Age: remove clauses which did not participate in recent conflict clause derivation

§ Size: keep short clauses forever (|C|<8)

Restarts every 550 conflicts

Innovation in decision heuristics
§ Boost the score for all the literals visited during conflict analysis (rather than only in the conflict clause)

§ Used in modern solvers

§ Clause-based heuristic
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h@5(C5)

C1= ¬a Ú f Ú g

C2= ¬a Ú f Ú ¬g

C3= ¬c Ú ¬f Ú g

C4= ¬b Ú ¬f Ú ¬g

C5= ¬e Ú h

a@1
b@2

c@3

d@4

e@5

g@5

¬ g@5

f@5

c@3

b@2

C3

C3

C4

C6

C4

Implication graph

f@5(C6)

C6= ¬e Ú ¬h Ú f

h@5
C5 C6

g@5(C3)

e@5

¬e Ú ¬c Ú ¬b

- Chaff’s: boost the scores of ¬e, ¬c and ¬b  
- BerkMin: additionally to ¬e, ¬c and ¬b, boost the scores of h, f, g, ¬g 
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BerkMin & Forklift by Goldberg & Novikov
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Forklift: industrial closed-source solver (Cadence)

We discuss Forklift’s direct ancestor BerkMin (won Handmade, SAT category at SC’02)

Goldberg, Novikov: BerkMin: A fast and robust SAT-solver,  DATE, 2002.

Clause deletion is based on “age” and size. The strategy, simplified:
§ Age: remove clauses which did not participate in recent conflict clause derivation

§ Size: keep short clauses forever (|C|<8)

Restarts every 550 conflicts

Innovation in decision heuristics
§ Boost the score for all the literals visited during conflict analysis (rather than only in the conflict clause)

§ Used in modern solvers

§ Clause-based heuristic
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Clause-based Heuristics
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Berkmin 

§ The conflict clauses are placed on a stack

§ The next variable is picked from the topmost unsatisfied clause

§ If no such clause exists, use VSIDS

HaifaSAT (3d in three Industrial categories at SC’05)

Roman Gershman, Ofer Strichman: HaifaSat: A New Robust SAT Solver. Haifa Verification Conference 2005: 76-89

§ Move clauses visited during conflict analysis to the top

CBH -- Eureka SAT solver (2nd at SR’06)

Nachum Dershowitz, Ziyad Hanna, Alexander Nadel: A Clause-Based Heuristic for SAT Solvers. SAT 2005: 46-60

§ Either all the clauses (including the initial clauses) or only the initial clauses are on the stack

§ Move clauses visited during conflict analysis to the top

Added value w.r.t variable-based heuristics: picks interrelated variables

Didn’t make it to mainstream modern solvers, though CBH is occasionally very useful in my experience

§ 2023: modified CBH works great for constraint-based product configuration  

Matthias Gorenflo, Tomás Balyo, Markus Iser, Tobias Ostertag: Decision Heuristics in a Constraint-based Product Configurator. ConfWS 2023: 51-59

https://dblp.org/db/conf/sat/sat2005.html
https://dblp.org/db/conf/confws/confws2023.html
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SAT Competition & Race Winners (CNF & Appl. & Seq. & Non-incr. & All-inst.)
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2002

zChaff

2003

Forklift

2004

zChaff

2005

SatELite
GTI

Armin Biere’s& 
derived:

2006

RSAT

2007

MiniSat MiniSat

2008

Precosat

2009 2010

Crypto
MiniSat

2011

Glucose

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Glucose Lingeling Lingeling Maple
COMSPS

Maple
LCMDist

Maple
LCMDist
ChronoBT

Maple
LCMDist
ChronoBT
DLv3

Kissat KissatMAB

Moskewicz
Madigan
Zhao
Zhang
Malik

Goldberg
Novikov

Moskewicz
Madigan
Zhao
Zhang
Malik

Eén
Sörensson

Eén
Sörensson

Pipatsrisa
wat
Darwiche

Eén
Sörensson

Biere
Soos

Audemard
Simon

Audemard
Simon

Biere Biere Chen
Liang
Oh
Ganesh
Czarnecki
Poupart

Xiao
Luo
Li
Manya
Lu

Nadel
Ryvchin Kochemazov

Zaikin
Kondratiev
Semenov

Biere
Fazekas 
Fleury 
Heisinger

Cherif
Habet
Terrioux

MiniSat-based:

Others:

2022 2023

KissatMAB-HyWalk SBVA-CaDiCaL

Haberlandt
Green

abcdSAT

Zheng 
He
Chen 
Zhou 
Li
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Niklas Eén, Niklas Sörensson: An Extensible SAT-solver. SAT 2003: 502-518
§ Minisat solver
§ “Test of time” award at SAT’22

§ Simple & elegant engineering: the ancestor of a long line of solvers!
§ Impactful heuristics & algorithms:

§ Exponential VSIDS (EVSIDS)
– sometimes still called VSIDS today

§ Conflict clause minimization
§ Incremental-under-assumptions API: enabler of major real-world flows 

Niklas Eén, Armin Biere: Effective Preprocessing in SAT Through Variable and Clause 
Elimination. SAT 2005: 61-75
§ SatELite Preprocessing

https://dblp.org/db/conf/sat/sat2003.html
https://dblp.org/db/conf/sat/sat2005.html
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Minisat’s Decision Heuristic
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Separate variable and polarity heuristics
§ Keep score per variable, rather than per literal

§ Choose 0 as the first polarity

EVSIDS
§ Increment activity by an exponentially increasing increment (g=1/f)#conflict

§ Minisat: f=0.95 à g»1.05
§ Rescale when activity (for any variable) becomes higher than 10100

§ g *= 10-100

§ #conflict = 1

§ Even more dynamic than VSIDS

Both features  (further updated) made it to today’s state-of-the-art solvers
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Restart & Clause Deletion in Minisat

8/20/24
50

Restarts 
§ Geometric series

§ starting from 100, with the factor of 1.5

§ Too slow: didn’t make it to modern solvers

Clause deletion
§ Activity-based: smoothing BerkMin’s scheme

§ Each clause is associated with a float activity
§ Each time a clause is used in conflict analysis, its activity is increased
§ Periodically, the less active clauses are deleted (half of the clauses)
§ Still in use (along with other ideas)
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MiniSat & SatELite: Seminal Works
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Niklas Eén, Niklas Sörensson: An Extensible SAT-solver. SAT 2003: 502-518
§ Minisat solver
§ Simple & elegant engineering: the ancestor of a long line of solvers!

§ Impactful heuristics & algorithms:
§ Exponential VSIDS (EVSIDS)

– sometimes still called VSIDS today
§ Conflict clause minimization

§ Incremental-under-assumptions API: enabler of major real-world flows 
§ “Test of time” award at SAT’22

Niklas Eén, Armin Biere: Effective Preprocessing in SAT Through Variable and Clause 
Elimination. SAT 2005: 61-75
§ SatELite Preprocessing Next: after some preliminary material

After presenting SatELite

https://dblp.org/db/conf/sat/sat2003.html
https://dblp.org/db/conf/sat/sat2005.html
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Resolution and Variable Elimination
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C Ú l 
D Ú ¬l 

Resolution (Davis & Putnam’60)

C Ú D 
a Ú b Ú l 
c Ú b Ú ¬l a Ú b Ú c

l is the pivot

Variable Elimination by Resolution (Davis & Putnam’60)

C1 Ú l 
D1 Ú ¬l 
C2 Ú l 
D2 Ú ¬l 
…
Cn Ú l 
Dm Ú ¬l 

C1 Ú D1 
C1 Ú D2 
…
C1 Ú Dm
…
C2 Ú D1 
C2 Ú D2 
…
C2 Ú Dm

…
Cn Ú D1 
Cn Ú D2 
…
Cn Ú Dm

a Ú b Ú l 
d Ú l 
c Ú b Ú ¬l 
¬c Ú ¬ b Ú ¬l 

a Ú b Ú c
c Ú b Ú d
¬c Ú ¬ b Ú dEquisatisfiable
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Subsumption and Self-Subsuming Resolution
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Subsumption

C
C Ú D 

C
C Ú D 

a Ú b
a Ú b Ú c

a Ú b
a Ú b Ú c

C Ú D Ú l 
C Ú ¬l 

Self-subsuming Resolution

C Ú D Ú l 
C Ú ¬l 

a Ú b Ú l 
b Ú ¬l 

a Ú b
b Ú ¬l 
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SatELite Preprocessor
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Run the following till fixed-point
§ Variable elimination

§ Bounded: the number of clauses doesn’t grow
or grows by a constant factor

§ Gate identification: next slide

§ Subsumption for removing subsumed clauses:

§ Self-subsuming resolution for removing literals:

Crucial on many difficult instances ever since 2005!

a Ú b Ú l 
d Ú l 
c Ú b Ú ¬l 
¬c Ú ¬ b Ú ¬l 

a Ú b Ú c
c Ú b Ú d
¬c Ú ¬ b Ú d

a Ú b
a Ú b Ú c

a Ú b
a Ú b Ú c

a Ú b Ú l 
b Ú ¬l 

a Ú b
b Ú ¬l 
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SatELite with Gate Identification
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Idea: reduce the number of generated resolvents when eliminating a variable

How (on an AND-gate example; applicable to other gates too):
§ Assume the algorithm considers eliminating the variable g

§ Was g created by translating an AND-gate to clauses?
§ Are the following clauses (or their simplified variants) present:

§ Negative à optimization can’t be applied. Positive: 

§ Let the gate definition clauses be G = G+ È G- and the rest be R = R+ È R-

§ + clauses contain g; - clauses contain ¬g
§ Create only the resolvents between G and R!

§ Resolving between G+ and G- yield tautologies
§ Resolving between R+ and R- is unnecessary à next slide

a
b

g

g Ú ¬a Ú ¬b 
¬g Ú a
¬g Ú b

G+

G-
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P Ú a

SatELite with Gate Identification: Cont.
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Resolving between R+ and R- is unnecessary: the resolvents are obsolete

It can be yielded solely by resolutions between G and R:

a
b

g

g Ú ¬a Ú ¬b 
¬g Ú a
¬g Ú b

G+

G-

P Ú g Î R+ 
N Ú ¬g Î R- P Ú N 

P Ú g N Ú ¬g¬g Ú a g Ú ¬a Ú ¬b¬g Ú b
R+ R-G-

G+

N Ú ¬a Ú ¬bP Ú b

P Ú N Ú ¬b
P Ú N
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(Learned Clause) Minimization
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The idea: 
§ During conflict analysis, 

§ given a learnt clause C, 

§ remove unnecessary literals from C by resolution with parent clauses

Local minimization
Beame, P., Kautz, H., Sabharwal, A.: Towards understanding and harnessing the potential of clause learning. 
J. Artif. Intell. Res. ( JAIR) 22 (2004)

Recursive minimization 
Niklas Sörensson, Armin Biere: Minimizing Learned Clauses. SAT 2009: 237-243

§ In MiniSat since 2005

§ Standard nowadays, applied for every learnt clause
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Local Minimization
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C1= ¬a Ú b

C2= ¬b Ú c

C3= ¬b Ú ¬c Ú ¬d Ú e

C4= ¬b Ú ¬c Ú ¬d Ú ¬e
a@1 b@1

1UIP

C5 = ¬b Ú ¬c Ú ¬d

c@1

d@2

e@2

¬ e@2

a@1

b@1

c@1

d@2

C6 = ¬b Ú ¬d

- Given a newly learnt clause C, remove literals, whose antecedents (in the implication graph) are already in C
- By applying self-subsuming resolution with the parent clause

e@2
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d@2

e@2

Local Minimization Shortcoming

C1= ¬a Ú b

C2= ¬a Ú ¬b Ú c

C3= ¬a Ú ¬c Ú ¬d Ú e

C4= ¬a Ú ¬c Ú ¬d Ú ¬e
a@1

b@1

1UIP

C5 = ¬a Ú ¬c Ú ¬d

c@1

d@2

e@2

¬ e@2

a@1

b@1

c@1

C6 = ¬a Ú ¬b Ú ¬d

A new literal à local minimization fails
However, a further resolution step with C1 would have yielded C7 = ¬a Ú ¬d, which subsumes C5

- Given a newly learnt clause C, remove literals, whose antecedents (in the implication graph) are already in C
- By applying self-subsuming resolution with the parent clause
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Recursive Minimization

8/20/24
60

C1= ¬a Ú b

C2= ¬a Ú ¬b Ú c

C3= ¬a Ú ¬c Ú ¬d Ú e

C4= ¬a Ú ¬c Ú ¬d Ú ¬e
a@1

b@1

1UIP

C5 = ¬a Ú ¬c Ú ¬d

c@1

d@2

e@2

¬ e@2

a@1

b@1

c@1

d@2

- Given newly a learnt clause C, try to remove literals one-by-one in decreasing assignment order by continuous resolution 
with the parents till either:

- A new level or a new decision variable is reached à removal not possible
- Literals already in the clause reached à remove the literal from the clause

C6 = ¬a Ú ¬b Ú ¬d

C7 = ¬a Ú ¬d

e@2
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MiniSat in Non-Incremental Mode
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Preprocess() // Variable elimination with gate identification & subsumption & self-subsuming 
resolution

While (true)
§ Literal l = Decide()       // Variable-based EVSIDS + polarity 0 
§ BCP(l)
§ If (conflict)

§ ConflictAnalysisLoop()     // minimized 1UIP
§ If (learned an empty clause)

§ Return UNSAT
§ If (all the variables are assigned)

§ Return SAT
§ Occasionally, restart      // geometric series
§ Occasionally, delete conflict clauses   // activity-based
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Agenda
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How does a conflict-driven SAT solver work?
§ The core: backtrack search, Boolean Constraint Propagation (BCP), conflict analysis

§ Follow the first SAT Competition winners (from Chaff till Minisat)

Applying SAT by example 

§ Paradigms: incremental SAT solving, SAT-based local search, example encodings

§ Applications: Bounded Model Checking (BMC), proof-based abstraction refinement, bug 
hunting, anytime MaxSAT

Advanced core SAT algorithms
§ Follow the SAT Competition winners after Minisat & discussion about incremental SAT
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Hardware Circuit Example

8/20/24
63

definitions:

  I(C0) := FALSE;
  I(C1) := FALSE;
  X(C0) := C0 Å en;
  X(C1) := C1 Å (C0 Ù en);

constraints:

en à ¬X(en)

       

Q

QSET

CLR

D

C0
Q

QSET

CLR

D

C1

En

2-Bit Counter, counting when en=1
Cycle en C1 C0

0 1 0 0
1 0 0 1
2 1 0 1
3 0 1 0
4 1 1 0
5 0 1 1
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Hardware Model Checking
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Model Checking: given a circuit and a property, does the property always hold?

§ Safety property: something bad will never happen
§ Example: the counter never reaches the value 11 

definitions:

  I(C0) := FALSE;
  I(C1) := FALSE;
  X(C0) := C0 Å en;
  X(C1) := C1 Å (C0 Ù en);

constraints:

en à ¬X(en)

proof obligations:

¬(C0 Ù C1)

       

Q

QSET

CLR

D

C0
Q

QSET

CLR

D

C1

En

2-Bit Counter, counting when en=1
Cycle en C1 C0

0 1 0 0
1 0 0 1
2 1 0 1
3 0 1 0
4 1 1 0
5 0 1 1
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Hardware Model Checking
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Model Checking: given a circuit and a property, does the property always hold?

§ Safety property: something bad will never happen
§ Example: the counter never reaches the value 11 

definitions:

  I(C0) := FALSE;
  I(C1) := FALSE;
  X(C0) := C0 Å en;
  X(C1) := C1 Å (C0 Ù en);

constraints:

en à ¬X(en)

proof obligations:

¬(C0 Ù C1)

       

Q

QSET

CLR

D

C0
Q

QSET

CLR

D

C1

En

2-Bit Counter, counting when en=1
Cycle en C1 C0

0 1 0 0
1 0 0 1
2 1 0 1
3 0 1 0
4 1 1 0
5 0 1 1
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BMC: given a circuit j and a property P, verify P until a user-given bound n

§ For every bound bÎ{1,…,n}
§ The property holds at bound b iff (j unrolled to bound b) Ù ¬P is UNSAT
§ If it’s SAT, the model comprises the trace of a bug
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BMC Example

a
b ch

g

The property: hàb
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BMC Example: Cycle 0

a
b h

g

c0

A user-given initial value

a
b ch

g

The property: hàb
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BMC Example: Cycle 0

a
b h

g

c0

h Ú ¬g Ú ¬c0

¬h Ú g
¬h Ú c0

g Ú ¬a Ú ¬b 
¬g Ú a
¬g Ú b

¬b
h

The negation of the property hàb:

a
b ch

g

UNSAT: the property holds!

The property: hàb
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BMC Example: Cycle 1

a
b h

g

c0

a
b ch

g

bx hx
cx

ax gx

The property: hàb
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BMC Example: Cycle 1

a
b h

g

c0

h Ú ¬g Ú ¬c0 
¬h Ú g
¬h Ú c0

g Ú ¬a Ú ¬b 
¬g Ú a
¬g Ú b

¬bx
hx

The negation of the property hxàbx:

a
b ch

g

bx hx
cx

cx Ú ¬h
¬cx Ú h

ax gx

gx Ú ¬ax Ú ¬bx 
¬gx Ú ax
¬gx Ú bx

hx Ú ¬gx Ú ¬cx 
¬hx Ú gx
¬hx Ú cx

UNSAT!

The property: hàb
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Re-Using Relevant Information from Previous Cycles
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The property: hàb
a
b h

g

c0

bx hx
cx

h Ú ¬g Ú ¬ci 
¬h Ú g
¬h Ú ci

g Ú ¬a Ú ¬b 
¬g Ú a
¬g Ú b

¬b
h

¬bx
hx

cx Ú ¬h
¬cx Ú h

gx Ú ¬ax Ú ¬bx 
¬gx Ú ax
¬gx Ú bx

hx Ú ¬gx Ú ¬cx 
¬hx Ú gx
¬hx Ú cx

G0 G1

T0 T1

G0 and G1: hold globally

T0 and T1: hold temporary 
§ solely for a particular cycle
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h Ú ¬g Ú¬ci 
¬h Ú g
¬h Ú ci

g Ú ¬a Ú ¬b 
¬g Ú a
¬g Ú b

¬b
h

¬bx
hx

cx Ú ¬h
¬cx Ú h

gx Ú ¬ax Ú ¬bx 
¬gx Ú ax
¬gx Ú bx

hx Ú ¬gx Ú ¬cx 
¬hx Ú gx
¬hx Ú cx

G0 G1

Pervasive Clause Learning (GRASP)

73

Cycle 0: create a SAT instance G0 Ù T0 and solve it
§ Let G0

* be the set of pervasive conflict clauses, that is conflict clauses that depend only on G0

Cycle 1: create a SAT instance G0 Ù G0
* Ù G1 Ù S1 and solve it

a Ú ¬h 

g

G0
*

T0 T1
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Incremental SAT Solving under Assumptions (Minisat)

74

Cycle 0: create a SAT instance and solve it under the temporary assumptions T0

§ T0 clauses are not part of the instance, instead:

§ The literals of T0 are used as the first decision, or assumptions

§ Any learnt clause which depends on an assumption a, will contain a itself or derived literals à all the learnts are pervasive!

§ If one of the assumptions must be flipped, the solvers returns UNSAT

Cycle 1: add the clauses C1 to the same SAT instance and solve under the assumptions T1

h Ú ¬g Ú¬ci 
¬h Ú g
¬h Ú ci

g Ú ¬a Ú ¬b 
¬g Ú a
¬g Ú b

¬b
h

¬bx
hx

cx Ú ¬h
¬cx Ú h

gx Ú ¬ax Ú ¬bx 
¬gx Ú ax
¬gx Ú bx

hx Ú ¬gx Ú ¬cx 
¬hx Ú gx
¬hx Ú cx

a Ú ¬h 

Assumptions Assumptions
T0 T1
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Incremental SAT Solving under Assumptions

Basic API:
§ AddClause(Clause C)
§ Solve(Literals A)

Output:
§ SAT iff F Ù A is  SAT

§ F: all the clauses added so far
§ A: current assumptions

Allows the user to add groups of clauses temporarily (for invocation #i)
§ Using a new selector (activation) variable s
§ To add a temporary clause Ti: AddClause(Ti Ú s)
§ Solve(A Ù ¬s)
§ To delete all the temporary clauses afterwards: do nothing or add a unit clause s

75
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Incremental SAT Solving under Assumptions
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A breakthrough
§ Extremely easy to use
§ Very efficient, since it retains the following info across all the queries:

§ the conflict clauses
§ heuristical data: variable scores, clause activities, …

Incremental solving under assumptions is widely used, including:
§ Hardware & Software Validation

§ SAT-based Optimization, including MaxSAT

My personal industrial experience: can’t recall any non-incremental SAT application

Minisat: SatELite preprocessing is incompatible with incremental solving
§ Later works make it compatible:

Alexander Nadel, Vadim Ryvchin, Ofer Strichman: Preprocessing in Incremental SAT. SAT 2012: 256-269
Katalin Fazekas, Armin Biere, Christoph Scholl: Incremental Inprocessing in SAT Solving. SAT 2019: 136-154

https://dblp.org/db/conf/sat/sat2012.html
https://dblp.org/db/conf/sat/sat2019.html
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Unsatisfiable Core in Terms of Assumptions
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Extended API:
§ AddClause(Clause C)

§ Solve(Literals A)

§ If UNSAT:
§ Is assumption lÎA required for unsatisfiability proof?

Algorithm outline
§ Conflict at decision level 0: unrelated to the assumptions

§ None of the assumptions is required

§ Otherwise, an assumption must have been flipped
§ Go over the trail backwards 
§ Mark all the decision variables (must be assumptions!), connected to the flipped assumption
§ Return the marked assumptions
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seen: marks variables connected to the flipped assumption

p: the flipped assumption
out_conflict: the returned set of assumptions in the core

Go over the trail backwards

A decision variable: must be an assumption, since the 
flip must have occurred at an assumption level

An implied variable: mark all the variables in its parent
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Proof-based Abstraction Refinement Example

No BugValidModel Check A

BMC(M,P,k)

Cex C at unrolling depth k

Bug
No

A ß A È latches in the UNSAT 
core of BMC(M,P,k) 

Inputs: model M, property P 
Output: does P hold under M?

Abstract model A ß  { }

Spurious?

The unsatisfiable core in terms of the latches is required

Yes

Cut latches into 
free inputs

Kenneth L. McMillan, Nina Amla: Automatic Abstraction without Counterexamples. TACAS 2003: 2-17
Aarti Gupta, Malay K. Ganai, Zijiang Yang, Pranav Ashar: Iterative Abstraction using SAT-based BMC with Proof Analysis. ICCAD 2003: 416-423

https://dblp.org/db/conf/tacas/tacas2003.html
https://dblp.org/db/conf/iccad/iccad2003.html
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SAT-based Local Search: 
Finding a Solution Near an Assignment
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Find a solution near an assignment M={v1=s1, v2=s2, …, vn=sn}

Polarity-based 

§ Change only the polarity selection heuristic

§ Whenever a decision variable vi is chosen, choose si as its first polarity

Sabih Agbaria, Dan Carmi, Orly Cohen, Dmitry Korchemny, Michael Lifshits, Alexander Nadel:
SAT-based semiformal verification of hardware. FMCAD 2010: 25-32

https://dblp.org/db/conf/fmcad/fmcad2010.html
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New Initial 
states

New Initial 
states

New Initial 
states

initial 
states

deep bugs 

Max BMC 

Bound

Original Application: Bug Hunting

Needed to generate diverse 
solutions on the boundary!
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Original Application: DiverseKSet for Bug Hunting
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DiversekSet in SAT: generate a user-given number of diverse solutions
§ Maximize the average Hamming distance between the solutions

Diverse solutions, given an empty CNF
§ 000000

§ Any model

§ 111111
§ Flip every variable

§ 001110
§ Pick a random value

§ 110001
§ Balance the values for every variable

Given a CNF formula:
§ SAT-based local search: fix the polarities to match the current target solution (which would maximize the Hamming distance) 

§ Run SAT incrementally

§ Adjust the target solution
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Optimization in SAT
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OptSAT(F, y): given a propositional formula F in CNF and a Pseudo-Boolean objective 
function y, return a model to F which minimizes y
§ A Pseudo-Boolean (PB) function: a mapping from every full assignment to a real number

Example: F = (a + b) (a + ¬c) (¬a + c)
   H has 3 models: 

- M1={a=0, b=1, c=0}
- M2={a=1, b=0, c=1}
- M3={a=1, b=1, c=1}

a b c y

0 0 0 2.3

0 0 1 3.5

0 1 0 8

0 1 1 100.1

1 0 0 96.3

1 0 1 75

1 1 0 1.35

1 1 1 20.4
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Optimization in SAT
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OptSAT(F, y): given a propositional formula F in CNF and a Pseudo-Boolean objective 
function y, return a model to F which minimizes y 
§ A Pseudo-Boolean (PB) function: a mapping from every full assignment to a real number

Example: F = (a + b) (a + ¬c) (¬a + c)
   H has 3 models: 

- M1={a=0, b=1, c=0}
- M2={a=1, b=0, c=1}
- M3={a=1, b=1, c=1}

a b c y

0 0 0 2.3

0 0 1 3.5

0 1 0 8

0 1 1 100.1

1 0 0 96.3

1 0 1 75

1 1 0 1.35

1 1 1 20.4

Best 
model
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• Few works

• Industrial usage @ Intel

Solving OptSAT(F, y) Instances in Real-life

8/20/24
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Is y is a linear PB function: y = wn-1*tn-1 + … + w1*t1 + … + w0*t0?
§ ti’s are Boolean variables
§ wi’s are strictly positive integer coefficients

§ Example: y = 2*t2 + 5*t1 + 7*t0

Yes No

• MaxSAT

• A well-established field

• Myriads of applications

• MaxSAT Evaluations since 2006
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MaxSAT: Optimizing a Linear PB Function in SAT
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Hard Clauses H 
- Satisfiable

Optimization Target T = {tn-1, tn-2 , … , t0}
- Each target bit ti is a literal (unit clause), associated with an integer 

weight w(ti) > 0

Input:

Unweighted MaxSAT: All the weights are 1

Output: A model M to H which minimizes the weight of the satisfied target bits y = wn-1*tn-1 + … + w1*t1 + … + w0*t0
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MaxSAT: Optimizing a Linear PB Function in SAT
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Hard Clauses H 
- Satisfiable

Optimization Target T = {tn-1, tn-2 , … , t0}
- Each target bit ti is a literal (unit clause), associated with an integer 

weight w(ti) > 0

Input:

Example: H = (a + b) (a + ¬c) (¬a + c); T={a,b}
   H has 3 models: 

- M1={a=0, b=1, c=0}
- M2={a=1, b=0, c=1}
- M3={a=1, b=1, c=1}

Unweighted MaxSAT: All the weights are 1

Output: A model M to H which minimizes the weight of the satisfied target bits y = wn-1*tn-1 + … + w1*t1 + … + w0*t0
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MaxSAT: Optimizing a Linear PB Function in SAT
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Hard Clauses H 
- Satisfiable

Optimization Target T = {tn-1, tn-2 , … , t0}
- Each target bit ti is a literal (unit clause), associated with an integer 

weight w(ti) > 0

Input:

Example: H = (a + b) (a + ¬c) (¬a + c); T={a,b}
   H has 3 models: 

- M1={a=0, b=1, c=0}
- M2={a=1, b=0, c=1}
- M3={a=1, b=1, c=1}

For unweighted MaxSAT, M1 and M2 are optimal, since:
M1(y) = M2(y) = 1, while M3(y) = 2

Output: A model M to H which minimizes the weight of the satisfied target bits y = wn-1*tn-1 + … + w1*t1 + … + w0*t0

Unweighted MaxSAT: All the weights are 1
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Exact vs. Anytime MaxSAT
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Anytime algorithm: expected to find better and better solutions, the longer it keeps running

MaxSAT research can be roughly classified into two categories
§ Exact

§ Guaranteed to return an optimal solution
§ No intermediate solutions are required
§ Evaluated at MaxSAT Evaluations since 2006

§ Anytime
§ Not guaranteed to return an optimal solution

– Some algorithms do
§ Improving solutions are output frequently
§ Evaluated at MaxSAT Evaluations since 2011

Handy for industrial usage
Modern solvers normally do: 

Local search preprocessing
SAT-based algorithm

Next we review the core SAT-based 
algorithm
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Linear Search SAT-UNSAT (LSU)
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1. F ß H (a CNF F is initialized with the hard clauses)
2. Run an incremental SAT solver over F
3. If SAT with a model M

• Block all the models of weight ³ M(y) in F (using a cardinality or a Pseudo-Boolean constraint)
4. Else (UNSAT)

• Return the last model M (M is guaranteed to be an optimal model)

LSU is applied in leading anytime MaxSAT solvers

§ During various stages, often as the last fallback option

Daniel Le Berre and Anne Parrain: The sat4j library, release 2.2. JSAT, 7(2-3):59–64, 2010.
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Linear Search SAT-UNSAT (LSU) Concept
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The optimal model

1. F ß H (a CNF F is initialized with the hard clauses)
2. Run an incremental SAT solver over F
3. If SAT with a model M

• Block all the models of weight ³ M(y) in F (using a cardinality or a Pseudo-Boolean constraint)
4. Else (UNSAT)

• Return the last model M (M is guaranteed to be an optimal model)

All the models

100
908360545249
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Linear Search SAT-UNSAT (LSU) Concept
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1. F ß H (a CNF F is initialized with the hard clauses)
2. Run an incremental SAT solver over F
3. If SAT with a model M

• Block all the models of weight ³ M(y) in F (using a cardinality or a Pseudo-Boolean constraint)
4. Else (UNSAT)

• Return the last model M (M is guaranteed to be an optimal model)

908360545249
100
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Linear Search SAT-UNSAT (LSU) Concept
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1. F ß H (a CNF F is initialized with the hard clauses)
2. Run an incremental SAT solver over F
3. If SAT with a model M

• Block all the models of weight ³ M(y) in F (using a cardinality or a Pseudo-Boolean constraint)
4. Else (UNSAT)

• Return the last model M (M is guaranteed to be an optimal model)

908360545249
100



PEG PDS DDI

Linear Search SAT-UNSAT (LSU) Concept
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1. F ß H (a CNF F is initialized with the hard clauses)
2. Run an incremental SAT solver over F
3. If SAT with a model M

• Block all the models of weight ³ M(y) in F (using a cardinality or a Pseudo-Boolean constraint)
4. Else (UNSAT)

• Return the last model M (M is guaranteed to be an optimal model)

908360545249
100
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Linear Search SAT-UNSAT (LSU) Concept
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1. F ß H (a CNF F is initialized with the hard clauses)
2. Run an incremental SAT solver over F
3. If SAT with a model M

• Block all the models of weight ³ M(y) in F (using a cardinality or a Pseudo-Boolean constraint)
4. Else (UNSAT)

• Return the last model M (M is guaranteed to be an optimal model)

908360545249
100
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Linear Search SAT-UNSAT (LSU) Concept
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1. F ß H (a CNF F is initialized with the hard clauses)
2. Run an incremental SAT solver over F
3. If SAT with a model M

• Block all the models of weight ³ M(y) in F (using a cardinality or a Pseudo-Boolean constraint)
4. Else (UNSAT)

• Return the last model M (M is guaranteed to be an optimal model)

908360545249
100
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Linear Search SAT-UNSAT (LSU) Concept
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1. F ß H (a CNF F is initialized with the hard clauses)
2. Run an incremental SAT solver over F
3. If SAT with a model M

• Block all the models of weight ³ M(y) in F (using a cardinality or a Pseudo-Boolean constraint)
4. Else (UNSAT)

• Return the last model M (M is guaranteed to be an optimal model)

908360545249
100
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Linear Search SAT-UNSAT (LSU) Concept
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1. F ß H (a CNF F is initialized with the hard clauses)
2. Run an incremental SAT solver over F
3. If SAT with a model M

• Block all the models of weight ³ M(y) in F (using a cardinality or a Pseudo-Boolean constraint)
4. Else (UNSAT)

• Return the last model M (M is guaranteed to be an optimal model)

908360545249
100
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Linear Search SAT-UNSAT (LSU) Concept
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1. F ß H (a CNF F is initialized with the hard clauses)
2. Run an incremental SAT solver over F
3. If SAT with a model M

• Block all the models of weight ³ M(y) in F (using a cardinality or a Pseudo-Boolean constraint)
4. Else (UNSAT)

• Return the last model M (M is guaranteed to be an optimal model)

908360545249
100
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Linear Search SAT-UNSAT (LSU) Concept
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1. F ß H (a CNF F is initialized with the hard clauses)
2. Run an incremental SAT solver over F
3. If SAT with a model M

• Block all the models of weight ³ M(y) in F (using a cardinality or a Pseudo-Boolean constraint)
4. Else (UNSAT)

• Return the last model M (M is guaranteed to be an optimal model)

908360545249
100
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Linear Search SAT-UNSAT (LSU) Concept
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1. F ß H (a CNF F is initialized with the hard clauses)
2. Run an incremental SAT solver over F
3. If SAT with a model M

• Block all the models of weight ³ M(y) in F (using a cardinality or a Pseudo-Boolean constraint)
4. Else (UNSAT)

• Return the last model M (M is guaranteed to be an optimal model)

908360545249
100
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Linear Search SAT-UNSAT (LSU) Concept
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1. F ß H (a CNF F is initialized with the hard clauses)
2. Run an incremental SAT solver over F
3. If SAT with a model M

• Block all the models of weight ³ M(y) in F (using a cardinality or a Pseudo-Boolean constraint)
4. Else (UNSAT)

• Return the last model M (M is guaranteed to be an optimal model)

908360545249
100
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Linear Search SAT-UNSAT (LSU) Concept
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1. F ß H (a CNF F is initialized with the hard clauses)
2. Run an incremental SAT solver over F
3. If SAT with a model M

• Block all the models of weight ³ M(y) in F (using a cardinality or a Pseudo-Boolean constraint)
4. Else (UNSAT)

• Return the last model M (M is guaranteed to be an optimal model)

908360545249
100
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Linear Search SAT-UNSAT (LSU) Concept
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1. F ß H (a CNF F is initialized with the hard clauses)
2. Run an incremental SAT solver over F
3. If SAT with a model M

• Block all the models of weight ³ M(y) in F (using a cardinality or a Pseudo-Boolean constraint)
4. Else (UNSAT)

• Return the last model M (M is guaranteed to be an optimal model)

908360545249
100
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Linear Search SAT-UNSAT (LSU) Concept
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1. F ß H (a CNF F is initialized with the hard clauses)
2. Run an incremental SAT solver over F
3. If SAT with a model M

• Block all the models of weight ³ M(y) in F (using a cardinality or a Pseudo-Boolean constraint)
4. Else (UNSAT)

• Return the last model M (M is guaranteed to be an optimal model)

908360545249
100
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Linear Search SAT-UNSAT (LSU) Concept
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1. F ß H (a CNF F is initialized with the hard clauses)
2. Run an incremental SAT solver over F
3. If SAT with a model M

• Block all the models of weight ³ M(y) in F (using a cardinality or a Pseudo-Boolean constraint)
4. Else (UNSAT)

• Return the last model M (M is guaranteed to be an optimal model)

908360545249
100
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Cardinality and Pseudo-Boolean (PB) Constraints

8/20/24
107

In LSU: how to block the models with an upper bound on the weight?

Unweighted MaxSAT:

§ Cardinality constraint: t1 + . . . + tn ≤ b
§ Example: t1 + t2 + t3 + t4 + t5 ≤ 3

Weighted MaxSAT:
§ PB constraint: w1*t1 + . . . + wn* tn ≤ b

§ Example: 2t1 + 4t2 + t3 + 5t4 + 7t5 ≤ 10

Next: the totalizer encoding for unweighted MaxSAT

§ Used by state-of-the-art anytime MaxSAT solvers
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Encoding Cardinality Constraints: The Totalizer 
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Totalizer: unary encoding-based addition tree to represent (t1 + . . . + tn)
§ Unary encoding: 1 = 01; 2 = 011; 3 = 0111; 4 = 01111; 5 = 011111; ...

Complexity: O(n2) clauses and O(n ∗ log(n)) variables

Given an upper-bound b on the sum value: O(n ∗ b) clauses
Markus Büttner, Jussi Rintanen: Satisfiability Planning with Constraints on the Number of Actions. ICAPS 2005: 292-299

§ Tight upper bound significantly reduces complexity

Useful feature (shared with many other encodings): arc consistency
§ Consider the following cardinality constraint t1 + . . . + tn ≤ b. 
§ If b variables are assigned 1, then unit propagation enforces 0 on the remaining n − b variables. 
§ If b+1 variables are assigned 1, then unit propagation triggers a conflict

Tightening the upper bound is easy and efficient à handy for LSU & anytime MaxSAT

Olivier Bailleux and Yacine Boufkhad: Efficient CNF encoding of boolean cardinality constraints. CP 2003: 108–122. 

https://dblp.org/db/conf/aips/icaps2005.html
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The Totalizer: o = a + b + c + d + e + f + g + h
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a b c d e f g h

i={i1i0}=a+b j={j1j0}=c+d k={k1k0}=e+f l={l1l0}=g+h

m={m3m2m1m0}=i+j n={n3n2n1n0}=k+l

o={o7o6o5o4o3o2o1o0}=m+n
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The Totalizer Example
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a b c d e f g h

i={i1i0}=a+b j={j1j0}=c+d k={k1k0}=e+f l={l1l0}=g+h

m={m3m2m1m0}=i+j n={n3n2n1n0}=k+l

o={o7o6o5o4o3o2o1o0}=m+n

a=1 b=0 c=1 d=1 e=0 f=0 g=0 h=1

i={01}=a+b j={11}=c+d k={00}=e+f l={01}=g+h

m={0111}=i+j n={0001}=g+h

o={00001111}=m+n
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The Totalizer Clauses

8/20/24

N1: bits 1-indexed

111

N2: bits 1-indexed

N3=N1 + N2: bits 1-indexed

N3 = N1 + N2
for (p = 0; p <= |N1|; ++p)
 for (q = 0; q <= |N2|; ++q)

Add clause ¬N1[p] Ú ¬N2[q] Ú N3[p+q] (N1[p]=1 and N2[q]=1 è N3[p+q]=1)
Add clause N1[p+1] Ú N2[q+1] Ú ¬N3[p+q+1] (N1[p+1]=0 and N2[q+1]=0 è N3[p+q+1]=0)

N1[0]=N2[0]=N3[0]=1; N1[|N1+1|]= N2[|N2+1|]= N3[|N3+1|]= 1 

p=2 q=3
p+q=5

(sum of the inputs is ≥ 5)

p+1=2 q+1=3 p+q+1=5         
(sum of the 
inputs < 5)Complexity: for n inputs, O(n2) clauses and O(n ∗ log(n)) variables
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Totalizer with Upper Bound
o = a + b + c + d + e + f + g + h ≤ 3
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a b c d e f g h

i={i1i0}=a+b j={j1j0}=c+d k={k1k0}=e+f l={l1l0}=g+h

m={m3m2m1m0}=i+j n={n3n2n1n0}=k+l

o={o7o6o5o4o3o2o1o0}=m+n
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Totalizer with Upper Bound:
o = a + b + c + d + e + f + g + h ≤ b=3
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a b c d e f g h

i={i1i0}=a+b j={j1j0}=c+d k={k1k0}=e+f l={l1l0}=g+h

m={0m2m1m0}=i+j n={0n2n1n0}=k+l

o={0o2o1o0}=m+n

Complexity: for n inputs, O(n ∗ b) clauses and O(n ∗ log(n)) variables
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Totalizer: Tightening the Upper Bound
o = a + b + c + d + e + f + g + h ≤ b=3
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a b c d e f g h

i={i1i0}=a+b j={j1j0}=c+d k={k1k0}=e+f l={l1l0}=g+h

m={0m2m1m0}=i+j n={0n2n1n0}=k+l

o={0o2o1o0}=m+n
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Totalizer: Tightening the Upper Bound
o = a + b + c + d + e + f + g + h ≤ b=3 à b=1
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a b c d e f g h

i={i1i0}=a+b j={j1j0}=c+d k={k1k0}=e+f l={l1l0}=g+h

m={0m2m1m0}=i+j n={0n2n1n0}=k+l

o={0o2o1o0}=m+n

Assert the unit clauses {¬o2} and {¬o1}; no need to create a new totalizer!
0 0
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LSU’s Main Problem
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The convergence is often too slow
§ The first model might be too far away

§ Finding the next best model might be too slow
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SAT-based Local Search to the Rescue
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TORC (Target-Optimal-Rest-Conservative) polarity selection
Alexander Nadel: Anytime Weighted MaxSAT with Improved Polarity Selection and Bit-Vector 
Optimization. FMCAD 2019: 193-202

§ A non-target variable: TORC sets its polarity to its value in the best model so far
§ Only after the initial SAT invocation is completed
§ In practice, finds the next best model much faster!

§ A target variable: TORC sets its polarity to 0
§ The first model and any subsequent model is closer to the ideal

§ Applied by the state-of-the-art anytime MaxSAT solvers

Polosat: a dedicated SAT-based local search algorithm, invoked instead of SAT (next)
Alexander Nadel: On Optimizing a Generic Function in SAT. FMCAD 2020: 205-213

https://dblp.org/db/conf/fmcad/fmcad2019.html
https://dblp.org/db/conf/fmcad/fmcad2020.html
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Polosat for MaxSAT 
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Polosat: further simulate local search with CDCL SAT
§ M := SAT(H)

§ Run the following loop until M is not improved anymore
§ Go over all the “bad” target bits (not assigned 0 in any model so far)

– Flip the current bad target bit t:
» M’ := SAT(H, {¬t}), but stop after 1000 conflicts! (¬t is an assumption)

– If (satisfiable and M’ improves M) M := M’

§ Always apply TORC: fix targets to 0 and non-targets to the best model so far

Hard Clauses H 
- Satisfiable

Optimization Target T = {tn-1, tn-2 , … , t0}
- Each target bit ti is a literal (unit clause), associated with an integer 

weight w(ti) > 0

Output: A model M to H which minimizes the weight of the satisfied target bits y = wn-1*tn-1 + … + w1*t1 + … + w0*t0
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Polosat Cont.

Default in state-of-the-art anytime MaxSAT solvers
§ Used by the top 3 solvers in all the 4 anytime categories @ MaxSAT Evaluation 2023 

Can be applied to optimize any PB function

Enabler for solving industrial optimization problems at Intel

Recently shown to boost Pseudo-Boolean (PB) Optimization

§ PB Optimization: optimizing an objective function under PB constraintsMarkus Iser , Jeremias Berg, Matti Järvisalo:
Oracle-Based Local Search for Pseudo-Boolean Optimization. ECAI 2023: 1124-1131

https://dblp.org/db/conf/ecai/ecai2023.html
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Agenda
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How does a conflict-driven SAT solver work?
§ The core: backtrack search, Boolean Constraint Propagation (BCP), conflict analysis

§ Follow the first SAT Competition winners (from Chaff till Minisat)

Applying SAT by example 

§ Paradigms: incremental SAT solving, SAT-based local search, example encodings

§ Applications: Bounded Model Checking (BMC), proof-based abstraction refinement, bug 
hunting, anytime MaxSAT

Advanced core SAT algorithms
§ Follow the SAT Competition winners after Minisat & discussion about incremental SAT
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SAT Competition & Race Winners (CNF & Appl. & Seq. & Non-incr. & All-inst.)
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2002

zChaff

2003

Forklift

2004

zChaff

2005

SatELite
GTI

Armin Biere’s& 
derived:

2006 2007

MiniSat MiniSat

2008

Precosat

2009 2010

Crypto
MiniSat

2011

Glucose

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Glucose Lingeling Lingeling Maple
COMSPS

Maple
LCMDist

Maple
LCMDist
ChronoBT

Maple
LCMDist
ChronoBT
DLv3

Kissat KissatMAB

Moskewicz
Madigan
Zhao
Zhang
Malik

Goldberg
Novikov

Moskewicz
Madigan
Zhao
Zhang
Malik

Eén
Sörensson

Eén
Sörensson

Pipatsrisa
wat
Darwiche

Eén
Sörensson

Biere
Soos

Audemard
Simon

Audemard
Simon

Biere Biere Chen
Liang
Oh
Ganesh
Czarnecki
Poupart

Xiao
Luo
Li
Manya
Lu

Nadel
Ryvchin Kochemazov

Zaikin
Kondratiev
Semenov

Biere
Fazekas 
Fleury 
Heisinger

Cherif
Habet
Terrioux

MiniSat-based:

Others:

RSAT

2022 2023

KissatMAB-HyWalk SBVA-CaDiCaL

Haberlandt
Green

abcdSAT

Zheng 
He
Chen 
Zhou 
Li
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a@1

Polarity selection: always choose the latest polarity – aka phase saving

Knot Pipatsrisawat, Adnan Darwiche:
A Lightweight Component Caching Scheme for Satisfiability Solvers. SAT 2007: 294-299

RSAT’s Phase Saving

8/20/24
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h@5(C5)

f@1(C8)

c@3

¬f@3(C7)

C1= ¬a Ú f Ú g

C2= ¬a Ú f Ú ¬g

C3= ¬c Ú ¬f Ú g

C4= ¬b Ú ¬f Ú ¬g

C5= ¬e Ú h

a@1
b@2

c@3

d@4

e@5

a@1

b@2

C8 = f Ú ¬a
f@5(C6)

g@3(C1)

C6= ¬e Ú ¬h Ú f

g@5(C3)

C7 = ¬f Ú ¬c Ú ¬b

c or ¬c?c@2

https://dblp.org/pid/p/ADarwiche.html
https://dblp.org/db/conf/sat/sat2007.html
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a@1

Polarity selection: always choose the latest polarity – aka phase saving

Knot Pipatsrisawat, Adnan Darwiche:
A Lightweight Component Caching Scheme for Satisfiability Solvers. SAT 2007: 294-299

RSAT’s Phase Saving
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h@5(C5)

f@1(C8)

¬c@3

¬f@3(C7)

C1= ¬a Ú f Ú g

C2= ¬a Ú f Ú ¬g

C3= c Ú ¬f Ú g

C4= ¬b Ú ¬f Ú ¬g

C5= ¬e Ú h

a@1
b@2

¬c@3

d@4

e@5

a@1

b@2

C8 = f Ú ¬a
f@5(C6)

g@3(C1)

C6= ¬e Ú ¬h Ú f

g@5(C3)

C7 = ¬f Ú c Ú ¬b

c or ¬c?¬c@2

https://dblp.org/pid/p/ADarwiche.html
https://dblp.org/db/conf/sat/sat2007.html
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Phase Saving
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Locality principle: refocus on the currently explored subspace

State-of-the-art polarity selection heuristic till 2020!
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SAT Competition & Race Winners (CNF & Appl. & Seq. & Non-incr. & All-inst.)
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2002

zChaff

2003

Forklift

2004

zChaff

2005

SatELite
GTI

Armin Biere’s& 
derived:

2006

RSAT

2007

MiniSat MiniSat

2008

Precosat

2009 2010

Crypto
MiniSat

2011

Glucose

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Glucose Lingeling Lingeling Maple
COMSPS

Maple
LCMDist

Maple
LCMDist
ChronoBT

Maple
LCMDist
ChronoBT
DLv3

Kissat KissatMAB

Moskewicz
Madigan
Zhao
Zhang
Malik

Goldberg
Novikov

Moskewicz
Madigan
Zhao
Zhang
Malik

Eén
Sörensson

Eén
Sörensson

Pipatsrisa
wat
Darwiche

Eén
Sörensson

Biere
Soos

Audemard
Simon

Audemard
Simon

Biere Biere Chen
Liang
Oh
Ganesh
Czarnecki
Poupart

Xiao
Luo
Li
Manya
Lu

Nadel
Ryvchin Kochemazov

Zaikin
Kondratiev
Semenov

Biere
Fazekas 
Fleury 
Heisinger

Cherif
Habet
Terrioux

MiniSat-based:

Others:

2022 2023

KissatMAB-HyWalk SBVA-CaDiCaL

Haberlandt
Green

Zheng 
He
Chen 
Zhou 
Li

abcdSAT
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Mate Soos, Karsten Nohl, Claude Castelluccia: Extending SAT Solvers to Cryptographic Problems. SAT 2009: 244-257

Motivation: XOR’s are notoriously difficult
§ Appear frequently in cryptographic problems

§ Pruning doesn’t work for XOR gates

CryptoMiniSat is still under active development!
§ CryptoMiniSat 5 | Wonderings of a SAT geek (msoos.org)

a Ú b Ú ¬q
 a Ú ¬b Ú q
 ¬a Ú b Ú q
 ¬a Ú ¬b Ú ¬q

 a Ú ¬q
 b Ú ¬q
¬a Ú ¬b Ú q

https://dblp.org/pid/82/844.html
https://dblp.org/pid/77/1880.html
https://dblp.org/db/conf/sat/sat2009.html
https://www.msoos.org/cryptominisat5/
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XOR clauses
§ Identification, separate propagation & watches, binary XORs, Gaussian elimination

Polarity selection:
§ Phase saving + occasional random flipping

Heuristics tuned separately for cryptographic vs. industrial instances
§ based on the percentage of XOR clauses and stability of variable activity

3 techniques presented next (after some preliminary material)
1. On-the-fly subsumption 

2. Failed literal probing

3. Hyper-binary resolution
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c@2 C4

a@1

b@2

c@2

d@2

e@2

Conflict Analysis as Resolution
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C1=¬bÚc

C2=¬aÚ¬cÚd

C3= ¬dÚe C4=¬aÚ¬dÚ¬e

C1= ¬b Ú c

C2= ¬a Ú ¬c Ú d

C3= ¬d Ú e

C4= ¬a Ú ¬d Ú ¬e

¬ e@2
d@2

a@1

C4

e@2

C3

C2
b@2 C1

Parent Clause

- The conflict clause is, in fact, derived by resolution (from the conflict upwards)
- Rightmost cut in the graph = resolution over the conflicting variable
- The cut goes one step leftwards = resolution goes one step upwards
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c@2 C4

a@1

b@2

c@2

d@2

e@2

Conflict Analysis as Resolution
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¬aÚ¬d

C1=¬bÚc

C3= ¬dÚe C4=¬aÚ¬dÚ¬e

C1= ¬b Ú c

C2= ¬a Ú ¬c Ú d

C3= ¬d Ú e

C4= ¬a Ú ¬d Ú ¬e

¬ e@2
d@2

a@1

C4

e@2

C3

C2
b@2 C1

C2=¬aÚ¬cÚd

- The conflict clause is, in fact, derived by resolution (from the conflict upwards)
- Rightmost cut in the graph = resolution over the conflicting variable
- The cut goes one step leftwards = resolution goes one step upwards
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c@2 C4

a@1

b@2

c@2

d@2

e@2

Conflict Analysis as Resolution
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¬aÚ¬c

¬aÚ¬d

C1=¬bÚc

C3= ¬dÚe C4=¬aÚ¬dÚ¬e

C1= ¬b Ú c

C2= ¬a Ú ¬c Ú d

C3= ¬d Ú e

C4= ¬a Ú ¬d Ú ¬e

¬ e@2
d@2

a@1

C4

e@2

C3

C2
b@2 C1

C2=¬aÚ¬cÚd

- The conflict clause is, in fact, derived by resolution (from the conflict upwards)
- Rightmost cut in the graph = resolution over the conflicting variable
- The cut goes one step leftwards = resolution goes one step upwards
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c@2 C4

a@1

b@2

c@2

d@2

e@2
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¬aÚ¬b

¬aÚ¬c

¬aÚ¬d

C1=¬bÚc

C3= ¬dÚe C4=¬aÚ¬dÚ¬e

C1= ¬b Ú c

C2= ¬a Ú ¬c Ú d

C3= ¬d Ú e

C4= ¬a Ú ¬d Ú ¬e

¬ e@2
d@2

a@1

C4

e@2

C3

C2
b@2 C1

C2=¬aÚ¬cÚd

- The conflict clause is, in fact, derived by resolution (from the conflict upwards)
- Rightmost cut in the graph = resolution over the conflicting variable
- The cut goes one step leftwards = resolution goes one step upwards
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c@2 C4

a@1

b@2

c@2

d@2

e@2

Conflict Analysis as Resolution
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¬aÚ¬b

¬aÚ¬c

¬aÚ¬d

C1=¬bÚc

C3= ¬dÚe C4=¬aÚ¬dÚ¬e

C1= ¬b Ú c

C2= ¬a Ú ¬c Ú d

C3= ¬d Ú e

C4= ¬a Ú ¬d Ú ¬e

¬ e@2
d@2

a@1

C4

e@2

C3

C2
b@2 C1

C2=¬aÚ¬cÚd

- Variable not in the implication graph?C0= ¬b Ú f

f@2

C0=¬bÚf
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c@2 C4

a@1

b@2

c@2

d@2

e@2
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¬aÚ¬b

¬aÚ¬c

¬aÚ¬d

C1=¬bÚc

C3= ¬dÚe C4=¬aÚ¬dÚ¬e

C1= ¬b Ú c

C2= ¬a Ú ¬c Ú d

C3= ¬d Ú e

C4= ¬a Ú ¬d Ú ¬e

¬ e@2
d@2

a@1

C4

e@2

C3

C2
b@2 C1

C2=¬aÚ¬cÚd

- Variable not in the implication graph = 
not part of the resolvent à skip over, 
don’t change the resolvent & continue!

C0= ¬b Ú f

f@2

¬aÚ¬b

C0=¬bÚf
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The idea: if an intermediate resolvent R subsumes clause C à replace C by R

Youssef Hamadi, Saïd Jabbour, Lakhdar Sais: Learning for Dynamic Subsumption. Int. J. Artif. Intell. 
Tools 19(4): 511-529 (2010)

HyoJung Han, Fabio Somenzi: On-the-Fly Clause Improvement. SAT 2009: 209-222

Applied by CryptoMinisat, Kissat, CaDiCaL, IntelSAT

https://dblp.org/db/journals/ijait/ijait19.html
https://dblp.org/db/journals/ijait/ijait19.html
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c@2 C4

a@1

b@2

c@2

d@2

e@2

On-the-fly Subsumption Example
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¬aÚ¬b

¬aÚ¬c

¬aÚ¬d

C1=¬bÚc

C3= ¬dÚe C4=¬aÚ¬dÚ¬e

C1= ¬b Ú c

C2= ¬a Ú ¬c Ú d

C3= ¬d Ú e

C4= ¬a Ú ¬d Ú ¬e

¬ e@2
d@2

a@1

C4

e@2

C3

C2
b@2 C1

C2=¬aÚ¬cÚd
Subsumes C4!

Subsumes C2!
C4ʹ= ¬a Ú ¬d

C2ʹ= ¬a Ú ¬c No subsumption
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Chu Min Li, Anbulagan: Heuristics Based on Unit Propagation for Satisfiability Problems. IJCAI (1) 1997: 366-371

Daniel Le Berre: Exploiting the real power of unit propagation lookahead. Electron. Notes Discret. Math. 9: 59-80 (2001)

An inprocessing technique orthogonal to the backtrack search
§ Used by CryptoMinisat, Kissat, CaDiCaL

Carried out at the beginning or after a restart

For every variable v
§ Assign v and BCP

§ If contradiction, add the unit clause (¬v) and continue to the next loop iteration
§ Assign ¬v and BCP

§ If contradiction, add the unit clause (v) and continue to the next loop iteration
§ For every literal l, implied by both v and ¬v, learn the unit clause (l)

https://dblp.org/db/conf/ijcai/ijcai97.html
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Fahiem Bacchus: Enhancing Davis Putnam with Extended Binary Clause Reasoning. AAAI/IAAI 2002: 613-619

Fahiem Bacchus, Jonathan Winter: Effective Preprocessing with Hyper-Resolution and Equality Reduction. SAT 2003: 341-355

Inês Lynce, João P. Marques Silva: Probing-Based Preprocessing Techniques for Propositional Satisfiability. ICTAI 2003

Hyper-binary resolution

Used during preprocessing (CryptoMinisat, Kissat)
§ By manipulating the binary implication graph

§ A graph in which the edges correspond to binary clauses
§ Also handy to derive and merge equivalent literals

l1 Ú l2 Ú l3Ú … Ú ln
¬l1 Ú l
¬l2 Ú l
…
¬ln-1 Ú l

ln Ú l

https://dblp.org/db/conf/aaai/aaai2002.html
https://dblp.org/db/conf/sat/sat2003.html
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2002

zChaff

2003

Forklift

2004

zChaff

2005

SatELite
GTI

Armin Biere’s& 
derived:

2006 2007

MiniSat MiniSat

2008

Precosat

2009 2010

Crypto
MiniSat

2011

Glucose

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Lingeling Lingeling Maple
COMSPS

Maple
LCMDist

Maple
LCMDist
ChronoBT

Maple
LCMDist
ChronoBT
DLv3

Kissat KissatMAB

Moskewicz
Madigan
Zhao
Zhang
Malik

Goldberg
Novikov

Moskewicz
Madigan
Zhao
Zhang
Malik

Eén
Sörensson

Eén
Sörensson

Pipatsrisa
wat
Darwiche

Eén
Sörensson

Biere
Soos

Audemard
Simon

Audemard
Simon

Biere Biere Chen
Liang
Oh
Ganesh
Czarnecki
Poupart

Xiao
Luo
Li
Manya
Lu

Nadel
Ryvchin Kochemazov

Zaikin
Kondratiev
Semenov

Biere
Fazekas 
Fleury 
Heisinger

Cherif
Habet
Terrioux

MiniSat-based:

Others:

RSAT

Glucose

2022 2023

KissatMAB-HyWalk SBVA-CaDiCaL

Haberlandt
Green

Zheng 
He
Chen 
Zhou 
Li

abcdSAT
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Gilles Audemard, Laurent Simon: On the Glucose SAT Solver. Int. J. Artif. Intell. Tools 27(1): 1840001:1-
1840001:25 (2018)

A well-known and widely used solver
§ Derived from Minisat

§ Still in use in many incremental applications

Introduced the Literal Block Distance (LBD) measure for clause quality

LBD-based clause deletion and restart strategies

Changes in VSIDS implementation

Binary resolution during conflict analysis
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Glucose’s Literal Block Distance (LBD) 
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What makes a conflict clause a good one?

LBD: the number of decision levels in the clause
§ Variables are propagated together: related and likely to be propagated together again

Recall: Locality
§ Focus the search on the relevant data 

§ Learn strong clauses from the local context

LBD is:
§ calculated when the conflict clause is created

§ updated when a clause is visited during conflict analysis

§ widely used by modern solvers
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Glucose: LBD-based Clause Deletion
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Delete half of the clauses based on LBD score
§ Ties are broken, based on activity

§ The deletion occurs every 2000 + 300 * x conflicts, where x is the number of clause deletions so far

§ Deletion is postponed, if the clauses are “too good”
§ Median LBD ≤ 3 à postponed by 1,000 conflicts
§ Highest LBD ≤ 5 à postponed by 1,000 conflicts

Exceptions
§ Glue clauses are kept forever

§ Glue clause: a clause with LBD=2

§ Whenever the LBD goes down, the clause is kept for one more round

§ Keep parent clauses (for correctness)
§ Glucose removes clauses not necessarily at decision level 0
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Intuition: restart, when the latest clauses are bad (their LBD is too high)

When to restart:
§ C: current LBD average over the latest 50 conflicts (since Glucose 2.1)

§ G: global LBD average

§ Restart when C * 0.8 > G
§ 0.8: since Glucose 2.1

Too aggressive: 
§ Yields restarts every 50 conflicts

§ Might be performed too close to a satisfying assignment

Postpone restart when the number of assigned literals grows suddenly
§ AC: current average of assigned literals when a conflict occurs (over the latest 5000 conflicts)

§ AG: global average of assigned literals when a conflict occurs

§ Postpone when 1.4 * AC > AG
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VSIDS in Glucose
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VSIDS increments activity by an exponentially increasing (g=1/f)#conflict

§ Minisat: f=0.95 à g»1.05

Since Glucose 2.3
§ every 5000th conflict, f is increased by 0.01, starting at 0.8 until 0.95 is reached

More dynamic at the beginning of the search, stabilizes later
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The idea: given a learnt clause C, remove unnecessary literals from C by resolution with 
satisfied (non-parent!) binary clauses
Gilles Audemard, Jean-Marie Lagniez, Bertrand Mazure, Lakhdar Sais: RCL: Reduce learnt 
clauses. https://baldur.iti.kit.edu/sat-race-2010/descriptions/solver_10.pdf, 2010 
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C1= ¬a Ú b

C2= ¬a Ú ¬b Ú c

C3= ¬b Ú ¬c Ú ¬d Ú e

C4= ¬b Ú ¬c Ú ¬d Ú ¬e
a@1 b@1

1UIP

C6 = ¬b Ú ¬c Ú ¬d

c@1

d@2

e@2

¬ e@2

a@1

b@1

c@1

d@2

C5= b Ú ¬c

C7 = ¬c Ú ¬d

- Minimization is unapplicable 
- Binary resolution with C5 works!

- C5 is a satisfied non-parent clause
- The implementation goes over binary watches of C’s literals
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Binary Resolution Heuristic
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Applied for newly learnt clauses for which both the following conditions hold:
§ Maximal size of 30

§ Maximal LBD of 6

Standard since Glucose
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Glucose in Non-Incremental Mode

8/20/24
147

Preprocess() // Variable elimination & subsumption & self-subsuming resolution

While (true)
§ Literal l = Decide()       // Updated variable-based EVSIDS
§ BCP(l)
§ If (conflict)

§ ConflictAnalysisLoop()     // Minimized 1UIP + binary resolution
§ If (learned an empty clause)

§ Return UNSAT
§ If (all the variables are assigned)

§ Return SAT
§ Occasionally, restart      // LBD-based
§ Occasionally, delete conflict clauses   // LBD-based
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2002

zChaff

2003

Forklift

2004

zChaff

2005

SatELite
GTI

Armin Biere’s& 
derived:

2006 2007

MiniSat MiniSat

2008

Precosat

2009 2010

Crypto
MiniSat

2011

Glucose

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Lingeling Lingeling Maple
COMSPS

Maple
LCMDist

Maple
LCMDist
ChronoBT

Maple
LCMDist
ChronoBT
DLv3

Kissat KissatMAB

Moskewicz
Madigan
Zhao
Zhang
Malik

Goldberg
Novikov

Moskewicz
Madigan
Zhao
Zhang
Malik

Eén
Sörensson

Eén
Sörensson

Pipatsrisa
wat
Darwiche

Eén
Sörensson

Biere
Soos

Audemard
Simon

Audemard
Simon

Biere Biere Chen
Liang
Oh
Ganesh
Czarnecki
Poupart

Xiao
Luo
Li
Manya
Lu

Nadel
Ryvchin Kochemazov

Zaikin
Kondratiev
Semenov

Biere
Fazekas 
Fleury 
Heisinger

Cherif
Habet
Terrioux

MiniSat-based:

Others:

RSAT

Glucose

2022 2023

KissatMAB-HyWalk SBVA-CaDiCaL

Haberlandt
Green

Zheng 
He
Chen 
Zhou 
Li

abcdSAT
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2002

zChaff

2003

Forklift

2004

zChaff

2005

SatELite
GTI

Armin Biere’s& 
derived:

2006 2007

MiniSat MiniSat

2008

Precosat

2009 2010

Crypto
MiniSat

2011

Glucose

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Lingeling Lingeling Maple
COMSPS

Maple
LCMDist

Maple
LCMDist
ChronoBT

Maple
LCMDist
ChronoBT
DLv3

Kissat KissatMAB

Moskewicz
Madigan
Zhao
Zhang
Malik

Goldberg
Novikov

Moskewicz
Madigan
Zhao
Zhang
Malik

Eén
Sörensson

Eén
Sörensson

Pipatsrisa
wat
Darwiche

Eén
Sörensson

Biere
Soos

Audemard
Simon

Audemard
Simon

Biere Biere Chen
Liang
Oh
Ganesh
Czarnecki
Poupart

Xiao
Luo
Li
Manya
Lu

Nadel
Ryvchin Kochemazov

Zaikin
Kondratiev
Semenov

Biere
Fazekas 
Fleury 
Heisinger

Cherif
Habet
Terrioux

MiniSat (SatELiteGTI)

CryptoMiniSat

Maple
COMSPS

Maple
LCMDist

Maple
LCMDist
ChronoBT

Maple
LCMDist
ChronoBT
DLv3

COMiniSatPS
Oh

MiniSat-based:

Others:

RSAT

Glucose

Glucose

abcdSAT

abcdSAT
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Chanseok Oh: Between SAT and UNSAT: The Fundamental Difference in CDCL SAT. SAT 2015: 307-323

UNSAT Instance
§ A proof is required

§ Strong conflict clauses are essential

§ Refocus on locally useful variables & clauses to learn stronger  clauses à

§ Aggressive restart strategy and VSIDS score update

SAT Instance
§ Can be solved instantly with a perfect oracle 

§ Less need for conflict clauses in practice (demonstrated experimentally)

§ Let the solver complete finding a potential model à

§ Slow restart strategy and VSIDS score update

COMiniSatPS: combining SAT & UNSAT stages in every (long enough) solver invocation

Clause deletion: 3-tiered scheme

https://dblp.org/db/conf/sat/sat2015.html
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UNSAT stage warm-up: 10,000 initial conflicts

C = 100

While (no solution)
§ SAT stage: C conflicts

§ UNSAT stage: 2*C conflicts

§ C = C*1.1

SAT Stage UNSAT Stage
Restarts No-restart Glucose
VSIDS Score Increment (g=1/0.999)#conflict (g=1/0.95)#conflict
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Core: kept forever
§ LBD ≤ 3 (at creation or during conflict analysis)

§ LBD threshold goes up to 5, if at 100,000 conflicts, there are <100 Core clauses

Tier2: bad clauses are relegated to Local

§ 3 < LBD ≤ 6 (at creation or during conflict analysis)

§ Every 10,000 conflicts, clauses not touched for 30,000 conflicts are relegated

Local: bad clauses are deleted

§ LBD > 6 (at creation)

§ Every 15,000 conflicts, the less active half of the clauses is deleted



PEG PDS DDI

SAT Competition & Race Winners (CNF & Appl. & Seq. & Non-incr. & All-inst.)

153

2002

zChaff

2003

Forklift

2004

zChaff

2005

SatELite
GTI

Armin Biere’s& 
derived:

2006 2007

MiniSat MiniSat

2008

Precosat

2009 2010

Crypto
MiniSat

2011

Glucose

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Lingeling Lingeling Maple
LCMDist
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LCMDist
ChronoBT

Maple
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Kissat KissatMAB
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Zhao
Zhang
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Zhao
Zhang
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Sörensson
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Eén
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Audemard
Simon
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Liang
Oh
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Xiao
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Biere
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Habet
Terrioux

MiniSat-based:

Others:

RSAT

Glucose

2022 2023

KissatMAB-HyWalk SBVA-CaDiCaL

Haberlandt
Green

Zheng 
He
Chen 
Zhou 
Li

abcdSAT Maple
COMSPS
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Jia Hui Liang, Vijay Ganesh , Pascal Poupart, Krzysztof Czarnecki:
Learning Rate Based Branching Heuristic for SAT Solvers. SAT 2016: 123-140

Similarly to VSIDS, choose and pick variables, based on activity

Boost variables, which made impact during their latest assignment term

https://dblp.org/db/conf/sat/sat2016.html
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Learning Rate Based (LRB)
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v

Just before unassigning v

C[v]: #conflicts in which v’s score was updated during the latest assignment term
Visited during conflict analysis or belongs to the parents of literals in the new conflict clause

age[v]: the number of conflicts during the latest assignment term
LR[v]: age[v] / C[v]
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When a variable is unassigned, adjust its activity, based on LR[v]
§ const double oldActivity ← activity[var];

§ activity[var] ← P * LR[var] + (1 - P) * oldActivity;

§ P: from 0.4 down to 0.06, decremented by 0.000001 every conflict when LRB is used
§ Down to 0.06 after 340,000 conflicts when LRB is used

The update algorithm uses Exponential Recency Weighted Average (ERWA)
§ used in nonstationary Multi-Armed Bandit (MAB) problems to estimate the average reward of different 

actions
Sutton, R. S., and Barto, A. G.: Reinforcement learning: An introduction, volume 1. MIT press Cambridge, 1998.

Summary: LRB considers the “local context” of the latest assignment term, more so in the 
beginning of the search
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1. UNSAT stage warm-up: 10,000 initial conflicts

2. SAT stage till 2,500 sec. from the beginning

3. UNSAT stage forever

SAT Stage UNSAT Stage
Restarts Luby Glucose
Decision Heuristic LRB Glucose’s EVSIDS (0.8à0.95)

Luby(512)

0

5000

10000

15000

20000

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

Restart Number

Th
re

sh
ol

d
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DISTANCE decision heuristic for the initial stage (first 50,000 conflicts)

Fan Xiao, Chu-Min Li, Mao Luo, Felip Manyà, Zhipeng Lü, Yu Li: A branching heuristic for SAT 
solvers based on complete implication graphs. Sci. China Inf. Sci. 62(7): 72103:1-72103:13 (2019)

Vivification aka distillation aka learnt-clause-minimization
§ Cédric Piette, Youssef Hamadi, Lakhdar Sais: Vivifying Propositional Clausal Formulae. ECAI 

2008: 525-529
§ HyoJung Han, Fabio Somenzi: Alembic: An Efficient Algorithm for CNF Preprocessing. DAC 2007: 

582-587
§ Mao Luo, Chu-Min Li, Fan Xiao, Felip Manyà, Zhipeng Lü: An Effective Learnt Clause 

Minimization Approach for CDCL SAT Solvers. IJCAI 2017: 703-711
§ Chu-Min Li, Fan Xiao, Mao Luo, Felip Manyà, Zhipeng Lü, Yu Li: Clause vivification by unit 

propagation in CDCL SAT solvers. Artif. Intell. 279 (2020)

https://dblp.org/pid/75/6466.html
https://dblp.org/db/conf/ijcai/ijcai2017.html
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DISTANCE Decision Heuristic
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Observation: at the beginning, variable scores are inaccurate, because they are based 
on very few conflicts

DISTANCE Heuristic:
§ Yet another separate “activity” priority queue, used for the first 50,000 conflicts

§ Increment v’s activity, depending on the longest distance between v and the conflict
§ The closer v to the conflict, the more v contributes
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DISTANCE: Longest Distance to Conflict 
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DISTANCE: Details
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distAct[v] is the DISTANCE activity, initialized to 0 for every v

longDist[v]: the longest distance to the conflict for the current conflict

When v contributes to a conflict, distAct[v] is incremented by inc×1/longDist[v]
§ inc: give more weight to recent conflicts

§ Start: inc ← 1 

§ After each conflict: inc ← inc / 0.95
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Vivification: an Inprocessing Algorithms
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At decision level 0 (inprocessing), go over the clauses and simplify them as follows:

Let C = c1 Ú c2 Ú … Ú cn be a clause

For i in [1,2,…n]
§ If ci is assigned 0, remove ci from C and continue to the next loop iteration

§ ¬c1 Ù … Ù ¬ci-1 Þ ¬ci
   @  c1 Ú … Ú ci-1 Ú ¬ci

§ Resolve C with c1 Ú … Ú ci-1 Ú ¬ci

§ If ci is assigned 1, replace C by c1 Ú … Ú ci-1 Ú ci  and stop
§ ¬c1 Ù … Ù ¬ci-1 Þ ci

   @  c1 Ú … Ú ci-1 Ú ci

§ c1 Ú … Ú ci-1 Ú ci subsumes C

§ Assign the literal ¬ci

§ Run BCP
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Controlling Vivification in MapleLCMDist 
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- Vivify only the learnt clauses

- When to apply vivification?
- Immediately after each clause database reduction

- #clauses: 2000 + 2 × 300 × database-reductions-so-far

- When to vivify clause C?
- C has not yet been vivified, and

- C is a learnt with a small LBD: consider only half of the learnt’s, sorted by LBDs

- What is the best literal order in literal C
- Default (as maintained by the solver)

- More active literals come earlier because of WL management
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1. Backtrack before conflict analysis: backtrack to the conflict level d, if required
§ Required in GRASP and called Non-Chronological Backtracking (NCB) in GRASP

§ Not required in Chaff: current decision level º conflict level

2. Learn an asserting clause C=[c1
@d, c2

@b<d, c3@@£b, …, ci@@£b, …, c|C|
@£b]

§ 1UIP clause in both GRASP & Chaff

3. Optionally, learn other clauses
§ GRASP: a clause for every other UIP of the conflict decision level

4. Backtrack: backtrack to a level in [b, b+1, …, d-1]  -- makes the asserting clause unit
§ GRASP -- always d-1: Chronological Backtracking (CB) in today’s terminology

§ Chaff -- always b: Non-Chronological Backtracking (NCB) in today’s terminology

5. Flip c1 by implying it in C and run BCP
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1996

GRASP

2001

Chaff

Maple_LCM_Dist_ChronoBT: the return of Chronological Backtracking (CB)
Alexander Nadel, Vadim Ryvchin: Chronological Backtracking. SAT 2018: 111-121

§ A backtracking heuristic choosing between CB and NCB
§ First 4,000 conflicts (warm-up): NCB
§ After 4,000 conflicts: NCB iff backtrack level - conflict level ≤ 100
§ Today: Maple-based solvers & Cryptominisat & Kissat (no warm-up in Kissat)

– CaDiCal & IntelSAT also combine NCB & CB, but differently

§ CB algorithm is similar to GRASP’s

§ Integrating CB with post-GRASP BCP data structures turned out to be highly non-trivial
§ Because of simultaneous propagation at several levels
§ BCP must be adjusted to prevent correctness & performance issues 
§ Useful BCP invariants are still violated!

2018

Maple_LCM
_Dist_Chro
noBT

Chaff’s algorithm is the state-of-the-art

https://dblp.org/db/conf/sat/sat2018.html
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Example of a necessary adjustment
§ ¬c1 and ¬c2 are assigned @1 à the clause is visited by BCP twice

§ Impossible with NCB, where the assigned level is always ³ max_level(C)
§ Need to swap literals to have two highest literals watched 

§ Essential for correctness – in order not to miss conflicts after backtracking!

Useful invariants are still violated even with the adjustments:
§ lowest implication: no assigned literal can be implied at a lower level 

§ lowest conflict: every conflict, BCP returns a clause 
falsified at the lowest possible level

Intel® SAT Solver (IntelSAT): a new formally proven BCP alg. with a possible solution

Alexander Nadel: Introducing Intel® SAT Solver. SAT 2022.

As of 2022: expecting new formal frameworks and empirical insights!

Integrating CB and BCP
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@30c2 @20c1

@30@1 @20@1

@1@20 @1@30

Falsified literal: Unassigned literal:

@10@20 @10

Satisfied literal:

@1@30 @1@30

@1@20 @1@20

SAT’2024: Robin Coutelier, Mathias Fleury and Laura Kovács
Lazy Reimplication in Chronological Backtracking (abstract)

https://www.easychair.org/smart-program/SAT2024/person16.html
https://www.easychair.org/smart-program/SAT2024/person14.html
https://www.easychair.org/smart-program/SAT2024/person17.html
https://www.easychair.org/smart-program/SAT2024/2024-08-21.html
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Duplicate Learnts: screen learnt clauses and add duplicates as permanent clauses

Stepan Kochemazov, Oleg Zaikin, Alexander A. Semenov, Victor Kondratiev: Speeding Up CDCL Inference 
with Duplicate Learnt Clauses. ECAI 2020: 339-346 
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Uses clause hash table

Hashes learnts with LBD(C) ≤ lbd_limit=12

Repeated once or twice à Tier2; Repeated 3-times à Core forever

Hash size limit = 500,000. When the limit is reached:
§ Purge all clauses repeated once

§ Increase the limit by 10% 

DL works well with vivification
§ Vivification may reduce the LBD score of clauses to make them eligible for DL
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MapleLCMDistChronoBTDLv3
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Preprocess()       // Variable elimination & subsumption & self-subsuming resolution

While (true)
§ Literal l = Decide()    // DISTANCE: 50,000 conf. à LRB: 2,500 sec. from start à EVSIDS

§ BCP(l)
§ If (conflict)

§ ConflictAnalysisLoop()  // minimized 1UIP + binary resolution; Combine CB & NCB
§ If (learned an empty clause)

§ Return UNSAT
§ If (all the variables are assigned)

§ Return SAT

§ Occasionally, restart       // Luby: 2,500 sec. from start à LBD-based
§ Occasionally, delete conflict clauses // 3-tiered LBD-based 
§ Occasionally, inprocess                        // vivification + restore duplicates
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Variable decision heuristic: VMTF for the UNSAT stage
§ Variable-Move-To-Front (VMTF): store variables in a conflict-driven stack and pick the top-most variable from there

L. Ryan: Efficient algorithms for clause-learning SAT solvers. Masters thesis, Simon Fraser University, February 2004

Advanced inprocessing
§ Vivification: the only technique available also in Maple

§ Failed literal probing and hyper-binary resolution (removed in 2022)

§ Bounded variable elimination, equivalent literal substitution, blocked clause elimination, bounded variable addition, …

Armin Biere, Matti Järvisalo, Benjamin Kiesl: Preprocessing in SAT Solving. Handbook of Satisfiability 2021: 391-435

Low-level optimizations, not present in Maple
§ Binary clauses are fully inlined

§ Watch lists are contained in a contiguous buffer (requires occasional defragmentation)

New polarity selection algorithm: local search & target phases
§ Subsequent slides: skipping today, tune in for Armin’s tutorial tomorrow!

https://dblp.org/pid/69/6999.html
https://dblp.org/pid/167/5022.html
https://dblp.org/db/series/faia/faia336.html
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The change is in the decision heuristic

Every restart, the solver chooses between:
1. VSIDS
2. CHB: predecessor of LRB

Using Multi-Armed Bandit (MAB) framework

Reward function: “we choose a reward function that estimates the ability of a heuristic to reach 
conflicts quickly and efficiently.”

The reward function to maximize: log2(decisions) / dVars

(a) decisions : the number of decisions 

(b) dVars: the number of variables used as decision variables at least once

As many decisions as possible over the same variables à locality principle!
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The change is in the local search component

“Combines BandSAT, FPS, and some other local search algorithms with different random 
walking or say local optimal escaping strategies”
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CaDiCaL
§ An incremental SAT solver
§ Around since 2017

§ 64-bit clause indexing
§ Allows one to handle huge instances, but increases the memory footprint

§ First open-source solver with incremental preprocessing (since 2019)
     Katalin Fazekas, Armin Biere, Christoph Scholl: Incremental Inprocessing in SAT Solving. SAT 2019: 136-154

§ We have a closed-sourced solver Fiver with incremental preprocessing (since 2012)
               Alexander Nadel, Vadim Ryvchin, Ofer Strichman: Preprocessing in Incremental SAT. SAT 2012: 256-269

§ Fiver supports SatELite, whereas CaDiCaL supports more techniques
§ Details: CaDiCaL 2.0 Armin Biere, Tobias Faller, Katalin Fazekas, Mathias Fleury, Nils Froleyks and Florian Pollitt, CAV’24

SBVA-CaDiCaL
§ Smart implementation of Bounded Variable Addition (BVA) inprocessing on top of CaDiCaL

https://dblp.org/db/conf/sat/sat2019.html
https://dblp.org/db/conf/sat/sat2012.html
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Incremental Solvers after Minisat
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Glucose
A dedicated feature: ignores assumption literals in LBD calculations

CryptoMinisat

Maple-based SC winners since MapleCOMSPS (SC’16) aren’t incremental, but MergeSAT is: 
Norbert Manthey: The MergeSat Solver. SAT 2021

SC incremental tracks: 
§ 2017 – won by the 2015 SR winner abcdSAT

§ 2020 – won by CryptoMinisat 

Kissat isn’t incremental, but CaDiCal is
§ 2024 – CaDiCaL 2.0 shown to outperform CryptoMinisat on SC’20 and some other incremental bench’s
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IntelSAT Alexander Nadel: Introducing Intel(R) SAT Solver. SAT 2022: 8:1-8:23

§ An open-source CDCL solver written from scratch in C++20

§ Optimized towards incremental app’s with rapid mostly SAT queries
§ Triggered by performance needs of industrial optimization problems

§ Application in the paper: anytime unweighted MaxSAT -- improves the state-of-the-art

§ Various applications @ Intel: placement, routing, scheduling, etc.

§ Incremental Lazy Backtracking (ILB): 
§ Upon a new incremental query Solve(A), backtrack to the highest possible level, rather than 0

– Let k be the maximal decision level, whose decision literal appears in A
– ILB backtracks to k (instead of 0)

§ Implemented in CaDiCaL 2.0

§ Chronological backtracking with reimplication: guarantees lowest implication & lowest conflict

https://dblp.org/db/conf/sat/sat2022.html
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Incremental  SAT: no progress since 2013 [KIS, SAT’21]

§ Glucose 3.0 (2013) is largely on par with a leading Maple-based solver (2021) on
§ Satisfiability-based MaxSAT: mostly SAT queries
§ Unsatisfiability-based MaxSAT: mostly UNSAT queries
§ Minimal Unsatisfiable Core (MUC) Extraction: mixed queries

§ None of the 5 latest techniques which improve non-incremental SAT has a significant positive impact on incremental SAT

My experience at Intel till 2021: no progress on industrial optimization problems
§ e.g., placement in physical design [CNR, TACAS’21] 

§ Triggered IntelSAT development in 2021

CaDiCaL 2.0 CAV’24 paper: progress on a variety of benchmarks, but no results on [KIS, SAT’21] bench’s

My intuitive take (without rigorous empirical evidence) -- it depends on the application:
§ Heavy SAT invocations (e.g., BMC): non-incr. progress is relevant; incremental inprocessing can be helpful

§ Light SAT invocations (e.g., MaxSAT, MUC extraction, PDR): non-incr. progress is less relevant; ILB can be helpful

[CNR, TACAS’21] Aviad Cohen, Alexander Nadel, Vadim Ryvchin: Local Search with a SAT Oracle for Combinatorial Optimization. TACAS (2) 2021: 87-104
[KIS, SAT’21] Stepan Kochemazov, Alexey Ignatiev, João Marques-Silva: Assessing Progress in SAT Solvers Through the Lens of Incremental SAT. SAT 2021: 280-298

https://dblp.org/db/conf/tacas/tacas2021-2.html
https://dblp.org/db/conf/sat/sat2021.html
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SAT is an unresolved mystery!

Yet, SAT solvers are scalable widely used tools

Main goals for today: 
§ Explain how modern SAT solvers work

§ Convey intuition why they work in practice

§ Provide examples of applying SAT


