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clause #1 clause #2

Introduction F=(@vh)rtaybye)

SAT: determine if a Boolean formula in Conjunctive Normal Form (CNF) is satisfiable

The original NP-Complete problem

= The famous Cook-Levin theorem (early 70s)
SAT has exponential complexity unless P = NP

P = NP (SAT): frequently called the most important outstanding question in CS

= |fitis easy to check that a solution to a problem is correct, is it also easy to solve the problem?

= One of the 7 Clay Millennium Prize Problems — worth $1,000,000
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Introduction

SAT is an unresolved mystery!
Yet, SAT solvers are scalable widely used tools

Main goals for today:

= Explain how modern SAT solvers work

= Convey intuition why they work in practice

= Provide examples of applying SAT
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SAT Applications
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SAT Application Examples
CAV 2022 PROGRAM

Harnessing the Power of Formal Verification for the $Trillion Chip Design Industry (abstract)

Invited Talk: A Billion SMT Queries a Day (Neha Rungta)

Ziyad Hanna

1)

v

ENTITY test
port a: in;
end ENTITY;
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System
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and Logic Design
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Circuit Design

Physical Design

Physical Verification

and Signoff
v

Fabrication
v
Packaging

and Testing
v

Chip

Partitioning

Floorplanning

Optimization with
SAT@

Placement
Clock Tree Synthesis

Signal Routing

j Timing Closure

(RePoRT)

Computer generated math proof is largest
ever at 200 terabytes

Credit: Victorgrigas/Wikideia/ CC BY-SA 3.0

(Phys.org)—A trio of researchers has solved a single math problem by using a
supercomputer to grind through over a trillion color combination possibilities, and in
the process has generated the largest math proof ever—the text of it is 200
terabytes in size. In their paper uploaded to the preprint server arXiv, Marijn Heule
with the University of Texas, Oliver Kullmann with Swansea University and Victor
Marek with the University of Kentucky outline the math problem, the means by which
a supercomputer was programmed to solve it, and the answer which the proof was
asked to provide.

The math problem has been named the boolean Pythagorean Triples problem and
was first proposed back in the 1980's by mathematician Ronald Graham. In looking




SAT Resources

oo of satisfiability

SAT Association: http://satassociation.org/

SAT Conferences: http://www.satisfiability.org/

SAT Competitions: http://www.satcompetition.org/

The Art of
Computer

SATLive: http://www.satlive.org/ Progmmnmgﬁ

Satisfiability

DONALD E. KNUTH

Decision

Procedures

Second Edition
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http://www.satisfiability.org/
http://www.satcompetition.org/
http://www.satlive.org/

Why am | Interested in SAT?

2002: stumbled upon SAT and completed my Master thesis about it (Hebrew University)
= Jerusat —won the Industrial, SAT category at SAT Competition 2004

2003: joined Intel
= Been developing & internally deploying SAT and SAT-based solvers (SMT, Model Checkers) ever since

= Till 2014: working on SAT-based validation as the rest of the semiconductor industry

= Since 2014: optimization (place & route, scheduling), test generation, physical design, lithography, ...

2009: PhD about SAT (Tel-Aviv University)

2023: joined the Technion’s Data and Decision Sciences faculty as a part-time research fellow

= Looking for students!

Most SW is closed-sourced, but lately | was able to participate in some open-source projects:
= 2018: MapleLCMDistChronoBT SAT solver — won the SAT Competition 2018
= 2019-2024 : TT-Open-WBO-Inc MaxSAT solver — multiple medals in MaxSAT Evaluations

= 2022: Intel released my new SAT solver “Intel® SAT Solver” (IntelSAT), tuned for optimization flows
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Agenda

How does a conflict-driven SAT solver work?

" The core: backtrack search, Boolean Constraint Propagation (BCP), conflict analysis
= Follow the first SAT Competition winners (from Chaff till Minisat)

Applying SAT by example

= Paradigms: incremental SAT solving, SAT-based local search, example encodings

= Applications: Bounded Model Checking (BMC), proof-based abstraction refinement, bug
hunting, anytime MaxSAT

Advanced core SAT algorithms

= Follow the SAT Competition winners after Minisat & discussion about incremental SAT
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Not in Today’s Agenda

SAT Solving
= Parallel SAT solving (divide & conquer, portfolio, cloud)
= Non-CNF formulas

= Deserves much more attention: inprocessing, encodings

SAT-based paradigms and solvers

= Satisfiability Modulo Theories (SMT)
= Quantified Boolean Formula (QBF)

= Model counting

= AlISAT — enumerating all solutions

= Model sampling
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SAT Fundamentals: Backtrack Search

The baseline algorithm in modern SAT solvers is backtrack search

Called DPLL or DLL

Davis, Martin;, Logemann, George; Loveland, Donald: "A Machine Program for Theorem
Proving". Communications of the ACM. 5 (7): 394-397. (1961).

Davis, Martin; Putnam, Hilary: A computing procedure for quantification theory. Journal of the ACM 7 (1960)
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https://en.wikipedia.org/wiki/Communications_of_the_ACM

From Enumeration to DPLL

clause #1 clause #2

F=(avb)a(-av-bvc)

\\\\:::\lhéﬁﬁ?’::::::://///

6 Boolean Constraint Propagation 6
Carry out backtrack search. 0 (BCP): after a decision, apply the 0
Stop when a model is found @ unit clause rule till fixed-point @

Stop when a clause
turns UNSAT

I /A Implied in parent clause #1: 1
0 0

The unit clause rule: the unassigned literal in a unit clause must be 1

A unit clause -- one unassigned, rest falsified: Cq Cy C3

The unassigned literal c; must be implied
A

Cq %) C3

Falsified literal: Satisfied literal: Unassigned literal:
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The Mystery of SAT Solver Scalability

DPLL: backtrack search with BCP until a model is found (SAT) or completion (UNSAT)
DPLL could handle formulas with <2,000 clauses
Modern SAT solvers cope with industrial instances of 100,000,000’s clauses

The introduction of Conflict-Driven-Clause-Learning (CDCL) or, simply,
Conflict-driven Solving was the birth of modern highly-scalable SAT solving

Learn from conflicts to drive & prune backtrack search
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CDCL: the Intuitive Principles

Learning and pruning

= Block already explored sub-spaces

Locality
= Focus the search on the relevant data

= Learn strong clauses from the local context

Well-engineered data structures

= Extremely fast Boolean Constraint Propagation (BCP)

Beyond CDCL

" |nprocessing

= Local search integration
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Basic CDCL Algorithm

Preprocess() // Simplify the formula
While (true)
= Literal | = Decide() // Choose the next literal to assign
= BCP(l) // Apply the unit clause rule till fixed point
= |f (conflict)
= ConflictAnalysisLoop() // Learn a new conflict clause(s), backtrack and flip a variable

= |f (learned an empty clause)
=  Return UNSAT

= |f (all the variables are assigned)
= Return SAT

= QOccasionally, restart
= Qccasionally, delete conflict clauses
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Conflict-driven SAT Solving: Seminal Work

1996: GRASP by Joao P. Marques-Silva and Karem A. Sakallah

Joéo P. Marques Silva, Karem A. Sakallah: GRASP - a new search algorithm for satisfiability. |CCAD 1996: 220-227

2001: Chaff by Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang and Sharad Malik

Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, Sharad Malik: Chaff: Engineering an Efficient SAT
Solver. DAC 2001: 530-535

CAV Award

4009

s Abstract The 2009 CAV (Computer-Aided Verification) award was presented to seven in-

B o dividuals who made major advances in creating high-performance Boolean satisfiability

Shaved Maiix

Joso A Margues-Sitve solvers. This annual award recognizes a specific fundamental contribution or series of out-

Matthew W. Moshewicr
Karem A. Sahkaliah

Lintoo Thang standing contributions to the CAV field.

Ying Zhao
tee
i S N

D e Y
L A
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https://dblp.org/db/conf/iccad/iccad1996.html
https://dblp.org/db/conf/dac/dac2001.html

Cmavive Chaff’s Confhct Analysis

Cz— —avfv —g
Decision variable/literal ——> a@1/ I Decision Level 1
C3= —Cc Vv —f v g / @ i
L Decision Level 2
C4= —b v —f v —g
L Decision Level 3
C5= —e Vv h
d@4 /

- Decision Level 4
C6= —ev —-hvf

e@5
Implied literal
\ h@5(Cs) Decision Level 5

—

f@5(Ce)

Conflict ]

analysis starts
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Implication Graphs and Conflict Analysis
Ci=—avfvg a@1 Implication graph

C2= —d \/f\/_lg b@2 c@3

Ci=—cv—fvg C@?’.
Cy= —b \/—lfV—lg d@4/

Cs
Cs=—e Vv h e@S/ e@SOR/C:5

C6= —ev —-hvf h@5(C5)
f@5(Ce)
g@5(Cy)

X

Every vertex corresponds to an assigned literal

b@2

A decision literal has 0 incoming edges
A literal implied in clause C has |C|-1 incoming edges from every other literal in C

We only need the strongly connected component of the conflict
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Implication Graphs and Conflict Analysis
a@1 Implication graph

Ci=—avfvg
b@2 @3

—|hV—|e\/—|CV—|b

C,=—avfv—g

Ci=—cv—fvg C@?’.
Cs=—e v h e@5/ e@5 , 6 .
I
Ce=—ev—-hvf h@5(Cs) i > 805
|
I |
f@5(C I
@5(Ce) b@2 i \ f' ) ]
1 =TV —CV —
g@5(C3) !
Conflict cut X !
—|eV—|C\/—|b

Right (conflict): the two conflicting implications

Left (reason): all the decision literals (roots)

Conflict clause
Corresponds to every cut: includes one appearance of —l for every edge |=2r in the cut

|
= Learning a conflict clause prevents the conflict from reappearing
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Implication Graphs and Conflict Analysis
a@1 Implication graph

Ci=—avfvg
b@2 @3

—|hV—|e\/—|CV—|b

C,=—avfv—g

Ci=—cv—fvg C@?’.
Ci=—bv-—fv—g d@4/ Cs g@5
Ce=—e v h e@5/ e@S/;/C:5 :
Ce=—ev—-hvf h@5(Cs) ll' : —g@5
f@5(C) . Il-' .
g @5(C,) ': —f v —c v —=b: 1UIP
X —|ev—|!cv—.b: 2UIP

A UIP cut has exactly one literal | of the last level on the reason side of its edges
| is a Unique Implication Point (UIP): a literal sufficient to imply the conflict at the last level

= A conflict clause is a UIP clause if it corresponds to a UIP cut

UIP’s are ordered starting from the conflict
8/20/24 -



cravive Chaff’s Conflict Analysis

C2=—|ava—|g

Ci=—cv—fvg b@ait?l b@2
C4= —bv —fv —g '
c@3 c@3 . NCBto1
C5= —e Vv h ® - :
d@4/
C6= —ev —-hvf
e@S/ . NCBto3 Conflict analysis
| completed
h@5(Cs)
Implication graph f@5(Cq) 7 a@1
c@3 g@5(C;)
c) 1UIIP ol @3
h@5 : g@s C7=—|fV—|C\/—|b
. ) 8 b@2 I g@3
e@s 6 f@s C —|f@3 |
./ oo c;B o 7 |
° Gl 8 - Learn a falsified asserting clause C=[c, @5, c,@F<0, c3@<F, ..., ¢|¢|@<F]

.C/r - 1UIP clause: fewest variables out of all UIP clauses (UIP clauses have one variable @ 0)
4 |
|

b@2

- Backtrack to level 3: called Non-Chronological Backtracking (NCB) = C becomes unit




GRASP’s Conflict Analysis

Ci=—avfvg a@1 a@1 a@l/‘
C,=—avfv—g b@?2 b@2 CB to 2 b@2
C3= —|CV—|f\/g c@3 -~ c@3 /

é \ Backtrack to f@1(Cs)
Ci=—bv—fv-—g d@4/ g@3 conflict level 3 ®

CBto 4 —g@1(C
C5= —e v f e@S/ to 1 _'f@3(c6) K & ( 4) ®
- _ _ In GRASP, f is a s,agg@]_( f o “flipped”
C6 fv—cv=b f@5(C5) @3g@3(C1) J( decision variable at leve/(;@,ég)u GRASP
c@3 —8 learns as if —f were ingh@8 at/ fevel 3

—|E@4
2UIP>1UIP C9=—|C v b v —f

Backtrack to the conflict level o: called NCB in GRASP (unnamed to
Learn a falsified asserting 1UIP clause C=[c,®?, c,@F<%, c,@Z

N - Learn a clause per every other UIP of the last level Conflict analysis
2UIP > 1UIP - Backtrack to level 3-1: called Chronological Backtracking completed
C,=—evf - Flip & imply ¢, in its parent C and run BCP

#



Up-to-date Conflict Analysis Algorithm
Covers GRASP & Chaff & Modern Solvers

1. Backtrack before conflict analysis: backtrack to the conflict level 9, if required
= Required in GRASP
= Not required in Chaff: current decision level = conflict level

2. Learn an asserting clause C=[c,@°, c,®P<°, c,@@<F, ..., c@@<F, ..., c|¢|@F]
= TUIP clause in both GRASP & Chaff
= Return UNSAT, if the clause is empty

3. Optionally, learn other clauses

= GRASP: a clause for every other UIP of the conflict decision level

4. Backtrack: backtrack to a level in [B, B+1, ..., 0-1] -- renders the asserting clause unit
= GRASP -- always 0-1: Chronological Backtracking (CB) in today’s terminology
= Chaff -- always 3: Non-Chronological Backtracking (NCB) in today’s terminology

5. Flip ¢c; by implying it in C and run BCP
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Boolean Constraint Propagation (BCP) Essentials

BCP is carried out after every decision and flip and consumes 80-90% run-time

What?
= |dentify and propagate in unit clauses (performance)
Cq Cy C3
v
C1 C C3

= |dentify and report any conflicts (correctness)

C1 Cy C3

How?

= Visit a clause when one of its watched literals is falsified
= Every literal [ holds a Watch List (WL) with all the clauses where / is watched

Falsified literal: Satisfied literal: Unassigned literal:
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Efficient Data Structure for BCP

- GRASP watched all the literals in every clause

- It is sufficient to watch two non-falsified literals: SATO’s Head/Tail!
e

%

C1 Cy C3 Cq Cs Ce C;

Hantao Zhang: SATO: An Efficient Propositional Prover. CADE 1997: 272-275

- Chaff’s 2WL: watching the first two literals — no need to visit during backtracking!

T

C, C, C3 Cq Cs Ce Ccy

- as long as: decision-level(falsified watch) > decision-level(falsified non-watch)

Caching one literal inside the watches & inlining binary clauses

Sérensson, N., Eén, N.: MiniSAT 2.1 and MiniSAT++ 1.0 - SAT race Editions. SAT, Competitive Event Booklet (2008) (caching one literal)
Geoffrey Chu, Aaron Harwood, Peter J. Stuckey: Cache Conscious Data Structures for Boolean Satisfiability Solvers. |. Satisf. Boolean Model.
Comput. 6(1-3): 99-120 (2009) (caching one literal & inlining binary clauses)

Falsified literal: Satisfied literal: Unknown literal:

8/20/24

Unassigned literal: Non-satisfied literal:

Non-falsified literal:



https://dblp.org/db/conf/cade/cade97.html
https://dblp.org/db/journals/jsat/jsat6.html

Falsified literal: Satisfied literal: Unknown literal:

BCP assuming NCB

Unassigned literal: Non-falsified literal: Non-satisfied literal:

For every satisfied literal | in the literal stack I (literals to be propagated)

" For<h#=-leC, C>e WL(—I) h: cached literal; C: the visited clause, where c,=—l or c,=—lI
= |f his satisfied: continue C is satisfied: no conflict, C isn’t unit = skip C
Clause visit: assume WLOG ¢, = —l ¢y c,=— Cs Cs
= |f ¢, is satisfied: continue cy c,=— Cs Cs
= |f a non-falsified k # ¢, €C exists c, =l Cs ca=k

— Swap(C, k, =)
— Remove <h # =l € C, C> from WL(—l)
— Add <h’ #k € C, C> to WL(k) c, c,=k Cs ca=—l |- heuristical

= Else (unit or falsified) |
c CHr=— C C
— If ¢q is unassigned, imply ¢; and add ¢, to IT (unit) - : : . :
Cq C,=—l C3 Ca
— If cqis falsified, report a conflict and return C (falsified) c, Cy= s C
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Agenda

How does a conflict-driven SAT solver work?

" The core: backtrack search, Boolean Constraint Propagation (BCP), conflict analysis
= Follow the first SAT Competition winners (from Chaff till Minisat)

Applying SAT by example

= Paradigms: incremental SAT solving, SAT-based local search, example encodings

= Applications: Bounded Model Checking (BMC), proof-based abstraction refinement, bug
hunting, anytime MaxSAT

Advanced core SAT algorithms

= Follow the SAT Competition winners after Minisat & discussion about incremental SAT

8/20/24 -



SAT Competition & Race Winners (CNF & Appl. & Seq. & Non-incr. & All-inst.)
2009 2010 2011

Crypto
MiniSat

2002 2003

ichafi [§ Forkit | 2Cha RSAT

2004 2005 2006 2007 2008

Glucose

Moskewicz Goldberg  Moskewicz Pipatsrisa  Eén Biere Audemard

Madigan Novikov Madigan Eén Sorensson wat Sérensson Soos Simon

Zhao Zhao Sorensson Darwiche

Zhang Zhang

Malik Malik

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
COMSPS j LCMDist LCMDist LCMDist

Audemard Biere Biere Chen ) ) ChronoBT Sl Biere Cherif

Simon Liang Xiao DLV3 Fazekas  Habet
Oh Luo Nadel Fleury Terrioux
Ganesh Li Ryvchin Kochemazov Hejsinger
Czarnecki Manya Zaikin
Poupart Lu Kondratiev

2022 2023 Semenov

Zheng Haberlandt

He Green

Chen

Zhou

Li

MiniSat-based:

Armin Biere’s&
derived:

Others:




Chaff

Covered:

= Conflict analysis

= BCP

To cover:

= Variable State Independent Decaying Sum (VSIDS) decision heuristic
= The first conflict-driven decision heuristic

= Conflict clause deletion

m Restarts
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Variable State Independent Decaying Sum (VSIDS)

Each literal | has a counter S(l), initialized to O

For every new clause C=[c;, C,, ..., ¢,], S(¢;) is incremented for every ¢,eC

Including initial and conflict clauses
The (unassigned) variable and polarity with the highest counter is chosen
Ties are broken randomly

Periodically (once in 256 conflicts), all the counters are halved.

- ___________________________________J



VSIDS Example

Heuristic-related data
Search tree

Literal Score
a

@)

—a
b
—b
C

—C
d
—d
e

OO 0O|O([O([O|O|O|O|O

—€

Conflicts till now: 0




VSIDS Example

Heuristic-related data
Search tree

Literal Score

@)

d

Count literal
appearances —d
in the initial ———|b

formula b

C

—C
d
—d
e

DN INIWINIW|W[UI|PD

—€

Conflicts till now: 0




VSIDS Example

Heuristic-related data
Search tree

ﬁee{h,V

Literal Score

d

Pick a literal
with maximal —d
score b

—b
C

—C
d
—d
e

DN INIWINIW|W[(UI| D

—€

Conflicts till now: 0




VSIDS Example

Heuristic-related data
Search tree

Literal Score
—e—>{h,i}

Pick an d :
unassigned —d —a->{d}
literal with — b 3
maximal b 3
score

C 2

—C 3

d 2

—d 4

e 2

—e 6 : :

Conflicts till now: 0




VSIDS Example

Conflict

Heuristic-related data

Literal

Score

d

—d

b

—b

C

—C

d

—d

€

—€

DN INIWINIW|W(UI|PD

Search tree

—e—>{h,i}

—a—>{d}

Conflicts till now: 0




VSIDS Example

Heuristic-related data
Search tree

Literal Score
a 4->5 —e>{h,i}
Increment
scores for —d > —a>{d}
conflict clause b 3
literals b 354
C 223
—C 3 J
d 2 X
—d 4
—hvavcyv-bvk
e 2
—e 6 : :
Conflicts till now: 1




VSIDS Example

Heuristic-related data

Search tree

Literal Score
a 10
—a 12
Assume the threshold b 18
of 256 is reached i, e
b 6 ..,...O
C 12 .::' o
o
—C 6 g e 6
d 2 X
—d 6
e 16
—© 6 Conflicts till now: 256




VSIDS Example

Heuristic-related data

Search tree

Literal Score

Halve the 2 1025

scores —a 1256
b 18->9
b 63 i O
c 1256 T S Y
—C 6->3 J 6 o
d 251 X
—d 623
e 1628
—c Eai Conflicts till now: 256




VSIDS vs. Static Heuristics

Pre-Chaff static heuristics
» Go over all clauses that are not satisfied
= Compute some function f(a) for each literal—based on frequency

* Choose literal with maximal f(a)

VSIDS was a breakthrough

= Extremely low overhead

= Conflict-driven = dynamic and local
= Based on recent conflicts
= Focuses the search to learn from the local context

- ___________________________________J



Conflict Clause Deletion

Maintaining too many clauses slows down the solver

D. Gelperin: Deletion-directed search in resolution-based proof procedures, in Proc. of the 3rd Int. Joint Conf. on
Artificial Intelligence (1973), pp. 47-50.

Chaff’s strategy:

= Mark a clause for deletion, once 100-200 literals become unassigned

8/20/24 -



Restarts

C. P. Gomes, B. Selman and H. A. Kautz: Boosting combinatorial search through randomization, in Proc. of AAAI
(1998), pp. 431-437

Refocus the search by starting from important variables

Chaff: restart every 700 conflicts

8/20/24 -



Chaff

Preprecesst)
While (true)
= Literal | = Decide() // VSIDS
= BCP(l) // 2WL
= |f (conflict)
= ConflictAnalysisLoop() // 1UIP + non-chronological backtracking

= |f (learned an empty clause)
=  Return UNSAT

= |f (all the variables are assigned)
= Return SAT

= Qccasionally, restart // Every 700 conflicts
= Qccasionally, delete conflict clauses // Mark for deletion, when 100-200 lit’s are unassigned

8/20/24 -



SAT Competition & Race Winners (CNF & Appl. & Seq. & Non-incr. & All-inst.)
2009 2010 2011

Crypto
MiniSat

2002 2003

ichafi [§ Forkit | 2Cha RSAT

2004 2005 2006 2007 2008

Glucose

Moskewicz Goldberg  Moskewicz Pipatsrisa  Eén Biere Audemard

Madigan Novikov Madigan Eén Sorensson wat Sérensson Soos Simon

Zhao Zhao Sorensson Darwiche

Zhang Zhang

Malik Malik

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
COMSPS j LCMDist LCMDist LCMDist

Audemard Biere Biere Chen ) ) ChronoBT Sl Biere Cherif

Simon Liang Xiao DLV3 Fazekas  Habet
Oh Luo Nadel Fleury Terrioux
Ganesh Li Ryvchin Kochemazov Hejsinger
Czarnecki Manya Zaikin
Poupart Lu Kondratiev

2022 2023 Semenov

Zheng Haberlandt

He Green

Chen

Zhou

Li

MiniSat-based:

Armin Biere’s&
derived:

Others:




BerkMin & Forklift by Goldberg & Novikov

Forklift: industrial closed-source solver (Cadence)
We discuss Forklift’s direct ancestor BerkMin (won Handmade, SAT category at SC’02)
Goldberg, Novikov: BerkMin: A fast and robust SAT-solver, DATE, 2002.

Clause deletion is based on “age” and size. The strategy, simplified:
=  Age: remove clauses which did not participate in recent conflict clause derivation

= Size: keep short clauses forever (| C|<8)
Restarts every 550 conflicts

Innovation in decision heuristics

= Boost the score for all the literals visited during conflict analysis (rather than only in the conflict clause)

8/20/24 -



Extended Score Boost Example

Implication graph

Ci=—avfvg a@1
C2= —ad \/f\/_lg b@z c@3
c@3

C=—cv—fvg

o
Cy= —b v —fv —g d@4/ ‘)./,
e@5 P Ge

C5= —e Vv h 8@5/ 1
I
Ce=—ev—hvf h@5(Cs) i
i
f@5(C !
@5(Cq) b@2 ;
i
g@5(C3) !
X !
—e vV —CV —|b

- Chaff’s: boost the scores of —e, —c and —b
- BerkMin: additionally to —e, —c and —b, boost the scores of h, f, g, —g
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BerkMin & Forklift by Goldberg & Novikov

Forklift: industrial closed-source solver (Cadence)
We discuss Forklift’s direct ancestor BerkMin (won Handmade, SAT category at SC’02)
Goldberg, Novikov: BerkMin: A fast and robust SAT-solver, DATE, 2002.

Clause deletion is based on “age” and size. The strategy, simplified:
=  Age: remove clauses which did not participate in recent conflict clause derivation

= Size: keep short clauses forever (| C|<8)
Restarts every 550 conflicts

Innovation in decision heuristics

= Boost the score for all the literals visited during conflict analysis (rather than only in the conflict clause)
= Used in modern solvers

=  (Clause-based heuristic

8/20/24 -



Clause-based Heuristics

Berkmin
= The conflict clauses are placed on a stack
=  The next variable is picked from the topmost unsatisfied clause

= If no such clause exists, use VSIDS
HaifaSAT (39in three Industrial categories at SC’05)

Roman Gershman, Ofer Strichman: HaifaSat: A New Robust SAT Solver. Haifa Verification Conference 2005: 76-89

=  Move clauses visited during conflict analysis to the top

CBH -- Eureka SAT solver (2" at SR’06)

Nachum Dershowitz, Ziyad Hanna, Alexander Nadel: A Clause-Based Heuristic for SAT Solvers. SAT 2005: 46-60

=  Either all the clauses (including the initial clauses) or only the initial clauses are on the stack

=  Move clauses visited during conflict analysis to the top
Added value w.r.t variable-based heuristics: picks interrelated variables

Didn’t make it to mainstream modern solvers, though CBH is occasionally very useful in my experience
= 2023: modified CBH works great for constraint-based product configuration

Matthias Gorenflo, Tomas Balyo, Markus Iser, Tobias Ostertag: Decision Heuristics in a Constraint-based Product Configurator. ConfWsS 2023: 51-59
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SAT Competition & Race Winners (CNF & Appl. & Seq. & Non-incr. & All-inst.)
2009 2010 2011

Crypto
MiniSat

2002 2003

ichafi [§ Forkit | 2Cha RSAT

2004 2005 2006 2007 2008

Glucose

Moskewicz Goldberg  Moskewicz Pipatsrisa  Eén Biere Audemard

Madigan Novikov Madigan Eén Sorensson wat Sérensson Soos Simon

Zhao Zhao Sorensson Darwiche

Zhang Zhang

Malik Malik

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
COMSPS j LCMDist LCMDist LCMDist

Audemard Biere Biere Chen ) ) ChronoBT Sl Biere Cherif

Simon Liang Xiao DLV3 Fazekas  Habet
Oh Luo Nadel Fleury Terrioux
Ganesh Li Ryvchin Kochemazov Hejsinger
Czarnecki Manya Zaikin
Poupart Lu Kondratiev

2022 2023 Semenov

Zheng Haberlandt

He Green

Chen

Zhou

Li

MiniSat-based:

Armin Biere’s&
derived:

Others:




MiniSat & SatELite: Seminal Works

Niklas Een, Niklas Sorensson: An Extensible SAT-solver. SAT 2003: 502-518

=  Minisat solver
= “Test of time” award at SAT’22

= Simple & elegant engineering: the ancestor of a long line of solvers!

= |mpactful heuristics & algorithms:
= Exponential VSIDS (EVSIDS)
— sometimes still called VSIDS today
= Conflict clause minimization

= |ncremental-under-assumptions API: enabler of major real-world flows

Niklas Eén, Armin Biere: Effective Preprocessing in SAT Through Variable and Clause
Elimination. SAT 2005: 61-75

= SatELite Preprocessing
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Minisat’s Decision Heuristic

Separate variable and polarity heuristics
= Keep score per variable, rather than per literal

= Choose 0 as the first polarity
EVSIDS

= |ncrement activity by an exponentially increasing increment (g=1/f)#conflict
= Minisat: f=0.95 = g~1.05

= Rescale when activity (for any variable) becomes higher than 10100
m g *= 1@-10@
= f#conflict =1

= Even more dynamic than VSIDS

Both features (further updated) made it to today’s state-of-the-art solvers
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Restart & Clause Deletion in Minisat

Restarts

= Geometric series
= starting from 100, with the factor of 1.5

= Too slow: didn’t make it to modern solvers

Clause deletion

= Activity-based: smoothing BerkMin’s scheme
= Each clause is associated with a float activity
= Each time a clause is used in conflict analysis, its activity is increased
= Periodically, the less active clauses are deleted (half of the clauses)

= Still in use (along with other ideas)

8/20/24 -



MiniSat & SatELite: Seminal Works

Niklas Een, Niklas Sorensson: An Extensible SAT-solver. SAT 2003: 502-518

"  Minisat solver

Simple & elegant engineering: the ancestor of a long line of solvers!

Impactful heuristics & algorithms:
= Exponential VSIDS (EVSIDS)
— sometimes still called VSIDS today

=  Conflict clause minimization After presenting SatELite
" |ncremental-under-assumptions API: enabler of major real-world flows

“Test of time” award at SAT’22

Niklas Eén, Armin Biere: Effective Preprocessing in SAT Through Variable and Clause
Elimination. SAT 2005: 61-75

= SatELite Preprocessing Next: after some preliminary material
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Resolution and Variable Elimination

lis the pivot Resolution (pavis & Putnam'60)

Cul avbvl |
by | [ —"CvD cvby avbvc

Variable Elimination by Resolution (pavis & Putnamo)

C, Vi glvgl ZV:)VI avbvc
D1v|—|I 1V va I —— cvbvd
VDOV —
Cv | Equisatisfiable C,V Dy cv—byv_| —~Ccv—-bvd
C, Vvl C,v Dy
C.vD
D, v -l C,vDh, v

J—

8/20/24 C2 Vv Dm -



Subsumption and Self-Subsuming Resolution

Subsumption

C C avb avb
CvD CwvD avbvec avhvc

Self-subsuming Resolution

CvDvVv| Cv D3l avbvl avb
Cv —l Cv —l bv —l bv —l
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SatELite Preprocessor

Run the following till fixed-point avbvl N

. o avbvec
= Variable elimination dvi cvbyd
= Bounded: the number of clauses doesn’t grow cvbv -l B by d
or grows by a constant factor v —by VbV

= Gate identification: next slide

= Subsumption for removing subsumed clauses:

avb avb
S A
avbvec avhvece

: . L avbvl avb
= Self-subsuming resolution for removing literals: —

Crucial on many difficult instances ever since 2005!
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SatELite with Gate Identification

ldea: reduce the number of generated resolvents when eliminating a variable

How (on an AND-gate example; applicable to other gates too):

a— g G+
= Assume the algorithm considers eliminating the variable g b_} /
= Was g created by translating an AND-gate to clauses? gv—av-—b
= Are the following clauses (or their simplified variants) present: : 8 VE ]_
=gV

Negative = optimization can’t be applied. Positive:

Let the gate definition clauses be G = G* U G and the rest be R=R* UR-
= + clauses contain g; - clauses contain —g

Create only the resolvents between G and R!
= Resolving between G* and G- yield tautologies
= Resolving between R* and R"is unnecessary =2 next slide
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SatELite with Gate Identification: Cont.

Resolving between R* and R is unnecessary: the resolvents are obsolete

Py e R SR
_ — P v N B2 D e /
Nv—-geR v av b7
—g VvV d ]- G :
It can be yielded solely by ns between G and R: . gvb ]
R* ¢ G* R

Pvg —gva —gvb gv—-av-b Nv-—g

) T

Pva PvDb Nv—av-—=b

Pv N -
8/20/24



(Learned Clause) Minimization

The idea:
= During conflict analysis,
= given a learnt clause C,

= remove unnecessary literals from C by resolution with parent clauses

Local minimization

Beame, P, Kautz, H., Sabharwal, A.: Towards understanding and harnessing the potential of clause learning.
J. Artif. Intell. Res. (JAIR) 22 (2004)

Recursive minimization

Niklas Sérensson, Armin Biere: Minimizing Learned Clauses. SAT 2009: 237-243
= |n MiniSat since 2005

= Standard nowadays, applied for every learnt clause
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Local Minimization

C,=—avhb a@1 e uIp
C,=—bvec b@1
Ci=—bv-acv—-dve c@1 @2
Ci=—bv-acv-—-dv—e d@2 e

e@ZT

C5 = —|b:}<:/:‘—|C V —|d ! e@2

C6=—|bV—|d

- Given a newly learnt clause C, remove literals, whose antecedents (in the implication graph) are already in C
- By applying self-subsuming resolution with the parent clause
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Local Minimization Shortcoming

Ci=—avb a@1 d@2 e
C;=—av-bvc b@1 J
Ci;=—av-cv—-dve c@1 i @2
Ci=—av-—cv-—dv—e d@2 a@1 I
e@ZT \
>< ]
—e@2

C5=—|av—|cv—|d
C6=—|av—|bv—|d

A new literal = local minimization fails
However, a further resolution step with C; would have yielded C, = —a v —d, which subsumes C:

- Given a newly learnt clause C, remove literals, whose antecedents (in the implication graph) are already in C
- By applying self-subsuming resolution with the parent clause




Recursive Minimization

d@2

C,=—avhb \ a@1 1UIP
C,=—av-—-bvc ‘\‘ b@1
C3=—av-—-cv—-dve ‘\‘ c@1 @2
Ci=—av-—-cv-adv—e “\‘ d@2 e

\

\‘ e@2

\“‘ X '
\ —e@2

X Y o C5 = —|a:}eZ:‘—|C V —|d
“ C6 =—d .—,:':l‘b v —d * N

A\ ,, o .

Y »

C7=—|av—|d

- Given newly a learnt clause C, try to remove literals one-by-one in decreasing assignment order by continuous resolution
with the parents till either:

- A new level or a new decision variable is reached = removal not possible
- Literals already in the clause reached > remove the literal from the clause
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MiniSat in Non-Incremental Mode

Preprocess()  // Variable elimination with gate identification & subsumption & self-subsuming

resolution
While (true)
= Literal | = Decide() // Variable-based EVSIDS + polarity O
= BCP(l)
= |f (conflict)
= ConflictAnalysisLoop() // minimized 1UIP

= |f (learned an empty clause)
= Return UNSAT

= |f (all the variables are assigned)
=  Return SAT

Occasionally, restart // geometric series

= (Qccasionally, delete conflict clauses // activity-based
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Agenda

How does a conflict-driven SAT solver work?

" The core: backtrack search, Boolean Constraint Propagation (BCP), conflict analysis
= Follow the first SAT Competition winners (from Chaff till Minisat)

Applying SAT by example

= Paradigms: incremental SAT solving, SAT-based local search, example encodings

= Applications: Bounded Model Checking (BMC), proof-based abstraction refinement, bug
hunting, anytime MaxSAT

Advanced core SAT algorithms

= Follow the SAT Competition winners after Minisat & discussion about incremental SAT
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Hardware Circuit Example

2-Bit Counter, counting when en=1

definitions: L Cycle m

1(C,) := FALSE; L D Q D Q

1 0 0

I(C,) := FALSE; f
X(Cp) :=C, @ en; o Q o Q 0 0 1
X(Cy) :==C,® (Cy A en); o C1 1 0 1

. Y
constraints:

En - 0) 1 0
en = —X(en) | 1 1 0
0) 1 1

Cycle_
C
2
Bl
N
5
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Hardware Model Checking

Model Checking: given a circuit and a property, does the property always hold?

= Safety property: something bad will never happen
= Example: the counter never reaches the value 11

2-Bit Counter, counting when en=1

definitions: L Cycle m

|
I(C,) := FALSE; L D o D Q
I(C,) := FALSE; -

X(Cp) :=C, @ en; N o Q
X(Cy) :==C,® (Cy A en); o 1

ol

constraints:
En

en 2 —X(en) |

o rr O r»r O .
_ = = O O O
b O O » +—» O

proof obligations:

—|(C0/\ Cl)
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Hardware Model Checking

Model Checking: given a circuit and a property, does the property always hold?

= Safety property: something bad will never happen

= Example: the counter never reaches the value 11 FALSE.

2-Bit Counter, counting when en=1

1 0

I(C,) := FALSE;

I(C,) := FALSE;

X(Cp) :=C, @ en;

X(Cy) :==C,® (Cy A en);

constraints:

En

en 2 —X(en) |

o rr O r»r O .
= = = O O O
= O O - = O

proof obligations:

—|(C0/\ Cl)
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Bounded Model Checking (BMC)

BMC: given a circuit ¢ and a property P, verify P until a user-given bound n
CAV Award

The recipients of the 2018 CAV Award are:

« Armin Biere

« Alessandro Cimatti
« Edmund M. Clarke
« Daniel Kroening

« Flavio Lerda

« Yunshan Zhu

for their Outstanding contribution to the enhancement and scalability of model checking by introducing Bounded
Model Checking based on Boolean Satisfiability (SAT) for hardware (BMC) and software (CBMC)

= For every bound be{l,...,n}

= The property holds at bound b iff (¢ unrolled to bound b) A —P is UNSAT
= |fit’s SAT, the model comprises the trace of a bug
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BMC Example

g:}ﬁ

A The property: h-=>b




BMC Example: Cycle O

g:}ﬁ

:h C

A The property: h-=>b

:h
%CO

— A user-given initial value

- ___________________________________J



BMC Example: Cycle O

A The property: h-=>b

hV—|g\/—|CO




BMC Example: Cycle 1

a1 9
b L: h C

A The property: h-=>b




BMC Example: Cycle 1

g:}ﬁ The property: h=>b

The negation of the property h,—2>b,:




Re-Using Relevant Information from Previous Cycles

Gy and G;: hold globally

Go Gl
Toand T;: hold temporary gV —a v b g,V —a, v b,
= solely for a particular cycle —gVva TBx VA b
. gvb B VD ¢ v —h
hv —g v —G,  hev —ge v — | PG Y
—h v g _‘hx V 8x
—h v Ci _‘hx V G
R I, _lbx ....... I,
h E hx




Pervasive Clause Learning (GRASP)

Gy G,
gv—av-—b Gy’ P g,V —ay, Vv —by
—gVva siav—h! | i8Va e
i gvb BV : ¢, v —h
h V _Ig V_IC| g hx Vv _ng Vv _ICX -..:(.:.)f..\./..h. ............
—h v g _'hx V 8x
—h v Ci _'hx V Cx :
...................... 2
—b To tg ! —b, T
h hy

Cycle O: create a SAT instance Gy A Tpand solve it

= Let G, be the set of pervasive conflict clauses, that is conflict clauses that depend only on G,

Cycle 1: create a SAT instance Gy A G,” A G; A S; and solve it

—‘



Incremental SAT Solving under Assumptions (Minisat)

gv—|av—|b i ing—|axv—|bx
—gVa ﬁav—hi - SAVACH O
A R R BV D e ¢ v —h
h \V4 _lg V_|C| : é hx Vv _ng V _ICX -..T[E)f..\./..h ............
—h v g _'hx V Bx
—h v G _'hx V G :
—b TO _'bx T]_ :
h Assumptions : h, Assumptions

Cycle O: create a SAT instance and solve it under the temporary assumptions T,

= Tyclauses are not part of the instance, instead:

= The literals of Tyare used as the first decision, or assumptions

* Any learnt clause which depends on an assumption a, will contain a itself or derived literals = all the learnts are pervasive!

= |f one of the assumptions must be flipped, the solvers returns UNSAT

Cycle 1: add the clauses C; to the same SAT instance and solve under the assumptions T; -



Incremental SAT Solving under Assumptions

Basic API:
= AddClause(Clause C)
= Solve(Literals A)

Output:
= SATiff FA Ais SAT
= F:all the clauses added so far
= A:current assumptions
Allows the user to add groups of clauses temporarily (for invocation #i)
= Using a new selector (activation) variable s
= To add a temporary clause T;: AddClause(T; Vv s)

= Solve(A A —s)

= To delete all the temporary clauses afterwards: do nothing or add a unit clause s

N




Incremental SAT Solving under Assumptions

A breakthrough
= Extremely easy to use
= Very efficient, since it retains the following info across all the queries:
= the conflict clauses
= heuristical data: variable scores, clause activities, ...
Incremental solving under assumptions is widely used, including:
= Hardware & Software Validation

= SAT-based Optimization, including MaxSAT

My personal industrial experience: can’t recall any non-incremental SAT application

Minisat: SatELite preprocessing is incompatible with incremental solving

= Later works make it compatible:

Alexander Nadel, Vadim Ryvchin, Ofer Strichman: Preprocessing in Incremental SAT. SAT 2012: 256-269
Katalin Fazekas, Armin Biere, Christoph Scholl: Incremental Inprocessing in SAT Solving. SAT 2019: 136-154
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Unsatisfiable Core in Terms of Assumptions

Extended API:
= AddClause(Clause C)
= Solve(Literals A)

= |f UNSAT:
= |s assumption |€A required for unsatisfiability proof?

Algorithm outline

= Conflict at decision level O: unrelated to the assumptions
= None of the assumptions is required

= QOtherwise, an assumption must have been flipped

= Go over the trail backwards
= Mark all the decision variables (must be assumptions!), connected to the flipped assumption

= Return the marked assumptions
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X

analyzeFinal : (p : Lit) -> [void]

Specialized analysis procedure to express the final conflict in terms of assumptions.
Calculates the (possibly empty) set of assumptions that led to the assignment of 'p', and
stores the result in 'out_conflict'.

@*/

/
I
I
I
| Description:
I
I
I
I
v

oid Solver::analyzeFinal(Lit p, vec <Lit> &out_conflict) {
out_conflict.clear();

out_conflict.push(p); p: the flipped assumption

, . out_conflict: the returned set of assumptions in the core
1f(decisionLevel() == 0)

return;

seen[var(p)] = 1;  seen: marks variables connected to the flipped assumption

for(int i = trail.size() - 1; i >= trail_lim[0]; i--) { @Go over the trail backwards
Var x = var(traill[il);

if(seen[x]) {
if(reason(x) == CRef_Undef) {

out_conflict. push(~traillil); A decision variable: must be an assumption, since the

} else { flip must have occurred at an assumption level
Clause &c = cal[reason(x)];
for(int j = ((c.size() == 2) 2 0 : 1); j < c.size(); j++)
if(level(var(c[j])

> 0)
=1

)
seen[var(c[j])] An implied variable: mark all the variables in its parent

¥

seen[x] = 0;

¥

seen[var(p)] = 0; 78
D



Proof-based Abstraction Refinement Example

Kenneth L. McMillan, Nina Amla: Automatic Abstraction without Counterexamples. TACAS 2003: 2-17

Aarti Gupta, Malay K. Ganai, Zijiang Yang, Pranav Ashar: Iterative Abstraction using SAT-based BMC with Proof Analysis. |ICCAD 2003: 416-423

Cut latches into

Inputs: model M, property P
Output: does P hold under M?

v

free inputs

Abstract model A < {}

v

Model Check A

Valid

BMCM,P.k)

The unsatisfiable core in terms of the latches is required

» No Bug

Cex C at unrolling depth k

- ___________________________________J
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https://dblp.org/db/conf/iccad/iccad2003.html

SAT-based Local Search:
Finding a Solution Near an Assignment

Find a solution near an assignment M={v,=6,, v,=06,, ..., V,=G,}

Polarity-based

Sabih Agbaria, Dan Carmi, Orly Cohen, Dmitry Korchemny, Michael Lifshits, Alexander Nadel:
SAT-based semiformal verification of hardware. FMCAD 2010: 25-32

= Change only the polarity selection heuristic

= Whenever a decision variable v; is chosen, choose o;as its first polarity
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Original Application: Bug Hunting

-

Needed to generate diverse 7

solutions on the boundary!

deep bugs

Max BMC " jnitial
states

Bound




Original Application: DiverseKSet for Bug Hunting

DiversekSet in SAT: generate a user-given number of diverse solutions

= Maximize the average Hamming distance between the solutions

Diverse solutions, given an empty CNF

= 000000
=  Any model

= 111111

= Flip every variable
= (001110

=  Pick a random value
= 110001

= Balance the values for every variable

Given a CNF formula:
= SAT-based local search: fix the polarities to match the current target solution (which would maximize the Hamming distance)
= Run SAT incrementally

= Adjust the target solution
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Optimization in SAT

OptSAT(F, y): given a propositional formula F in CNF and a Pseudo-Boolean objective
function v, return a model to F which minimizes y

= A Pseudo-Boolean (PB) function: a mapping from every full assignment to a real number

Example: F=(a+b) (a+ —c) (—a+c)
H has 3 models:

- M;={a=0, b=1, c=0}
- h45={&=1,b=0,C=1}~\\‘~\§\--~s\\\$
- Mj={a=I, b=1, c=1} 100.1

~
9))

1.35

L = B O O O O
= O O = B O O
R O »r O +» O = O

=
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Optimization in SAT

OptSAT(F, y): given a propositional formula F in CNF and a Pseudo-Boolean objective
function v, return a model to F which minimizes y

= A Pseudo-Boolean (PB) function: a mapping from every full assignment to a real number

Example: F=(a+b) (a+ —c) (—a+c)
H has 3 models:

- M,={a=0, b=1, c=0}
- h45={&=1,b=0,C=1}~\\‘~\§\--~s\\\$
- Mj={a=I, b=1, c=1} 100.1

~
9))

1.35

L = B O O O O
= O O = B O O
R O »r O +» O = O

=
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Solving OptSAT(F, v) Instances in Real-life

Is v is a linear PB function: w =w,_*t ; + ...+ w;*t; + ... + wy*t,?
= t’s are Boolean variables
= w;’s are strictly positive integer coefficients

= Example: y = 2*t, + 5*t; + 7%,

Yes No

e MaxSAT
e A well-established field

* Few works

. — * Industrial usage @ Intel
 Myriads of applications

e MaxSAT Evaluations since 2006
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MaxSAT: Optimizing a Linear PB Function in SAT

Input:  Hard Clauses H Optimization Target T ={t4, t,, .., to}
- Satisfiable - Each target bit t; is a literal (unit clause), associated with an integer
weight w(t) >0

Output: A model M to H which minimizes the weight of the satisfied target bits yw =w, _;*t, ; + ... + w *t; + ... + w*t,

Unweighted MaxSAT: All the weights are 1
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MaxSAT: Optimizing a Linear PB Function in SAT

Input:  Hard Clauses H Optimization Target T ={t4, t,, .., to}
- Satisfiable - Each target bit t; is a literal (unit clause), associated with an integer
weight w(t) >0

Output: A model M to H which minimizes the weight of the satisfied target bits yw =w, _;*t, ; + ... + w *t; + ... + w*t,

Unweighted MaxSAT: All the weights are 1

Example: H=(a+b) (a + —c) (—a + ¢); T={a,b}
H has 3 models:
- M;={a=0, b=1, c=0}
- M,={a=1, b=0, c=1}
- Mj={a=I, b=1, c=1}
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MaxSAT: Optimizing a Linear PB Function in SAT

Input: Hard Clauses H Optimization Target T={t, 4, t,», ..., to}
- Satisfiable - Each target bit t; is a literal (unit clause), associated with an integer
weight w(t) >0

Output: A model M to H which minimizes the weight of the satisfied target bits yw =w, _;*t, ; + ... + w *t; + ... + w*t,

Unweighted MaxSAT: All the weights are 1

Example: H=(a+b) (a + —c) (—a + ¢); T={a,b}
H has 3 models:
- M;={a=0, b=1, c=0}
- M,={a=1, b=0, c=1}
- Mj={a=I, b=1, c=1}
For unweighted MaxSAT, M, and M, are optimal, since:
M;(v) = Ma(y) = 1, while M;(y) =2
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Exact vs. Anytime MaxSAT

Anytime algorithm: expected to find better and better solutions, the longer it keeps running

MaxSAT research can be roughly classified into two categories

= Exact
= Guaranteed to return an optimal solution
= No intermediate solutions are required
= Evaluated at MaxSAT Evaluations since 2006

= Anytime
= Not guaranteed to return an optimal solution Handy for industrial usage
—_ Some algonthms do MOdern SOIVerS norma“y dO:
= |mproving solutions are output frequently _— Local search preprocessing

SAT-based algorithm
Next we review the core SAT-based
_ algorithm

8/20/24 -
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Linear Search SAT-UNSAT (LSU)

Daniel Le Berre and Anne Parrain: The satédj library, release 2.2. |SAT, 7(2-3):59-64, 2010.

1. F < H(a CNF Fisinitialized with the hard clauses)
2. Run an incremental SAT solver over F
3. If SAT with a model M

* Block all the models of weight > M(y) in F (using a cardinality or a Pseudo-Boolean constraint)
4. Else (UNSAT)

e Return the last model M (M is guaranteed to be an optimal model)

LSU is applied in leading anytime MaxSAT solvers

= During various stages, often as the last fallback option
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Linear Search SAT-UNSAT (LSU) Concept

1. F < H(a CNF Fisinitialized with the hard clauses)
Run an incremental SAT solver over F
3. If SAT with a model M

* Block all the models of weight > M(y) in F (using a cardinality or a Pseudo-Boolean constraint)
4. Else (UNSAT)

e Return the last model M (M is guaranteed to be an optimal model)

N

100
49 52 54 60 83 90

The optimal model All the models
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Linear Search SAT-UNSAT (LSU) Concept

1. F < H(a CNF Fisinitialized with the hard clauses)
Run an incremental SAT solver over F
3. If SAT with a model M

* Block all the models of weight > M(y) in F (using a cardinality or a Pseudo-Boolean constraint)
4. Else (UNSAT)

e Return the last model M (M is guaranteed to be an optimal model)

N

100
49 52 54 60 83 90

O—0-0—0 —0

Qo
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Linear Search SAT-UNSAT (LSU) Concept

1. F < H(a CNF Fisinitialized with the hard clauses)
Run an incremental SAT solver over F
3. If SAT with a model M
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Cardinality and Pseudo-Boolean (PB) Constraints

In LSU: how to block the models with an upper bound on the weight?

Unweighted MaxSAT:

= Cardinality constraint: t;+...+t,<b
" Example:t;+t,+t3+t,+t:<3

Weighted MaxSAT:

" PBconstraint: wy*t;+...+w,*t, <b
" Example: 2t; +4t, + t; + 5t, + 7t < 10

Next: the totalizer encoding for unweighted MaxSAT

= Used by state-of-the-art anytime MaxSAT solvers
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Encoding Cardinality Constraints: The Totalizer

Olivier Bailleux and Yacine Boufkhad: Efficient CNF encoding of boolean cardinality constraints. CP 2003: 108-122.

Totalizer: unary encoding-based addition tree to represent (t; +...+1t,)
= Unaryencoding:1=01;2=011;3=0111;4=01111; 5=011111; ...

Complexity: O(n?) clauses and O(n * log(n)) variables

Given an upper-bound b on the sum value: O(n * b) clauses

Markus Blittner, Jussi Rintanen: Satisfiability Planning with Constraints on the Number of Actions. |CAPS 2005: 292-299
= Tight upper bound significantly reduces complexity

Useful feature (shared with many other encodings): arc consistency
= Consider the following cardinality constraintt; +...+t,<b.

= |f b variables are assigned 1, then unit propagation enforces 0 on the remaining n — b variables.
= |f b+1 variables are assigned 1, then unit propagation triggers a conflict

Tightening the upper bound is easy and efficient 2 handy for LSU & anytime MaxSAT
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The Totalizerro=a+b+c+d+e+f+g+h

0={0705050,030,0,00}=M+n

m={msm,m;mg}=i+j n={nsn,ning}=k+l

i={ijip}=a+b j={j1jo}=c+d k={k;ko}=e+f I={l1lp}=g+h

a b C d e f g h
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The Totalizer Example

0={00001111}=m+n

m={0111}=i+j n={0001}=g+h

i={01}=a+b j={11}=c+d k={00}=e+f |={01}=g+h

a=1 b=0 c=1 d=1 e=0 f=0 g=0 h=1
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The Totalizer Clauses

N;=N;+N,
for (p =0; p <= [Ny|; ++p) p+q=5
for (g=0; g<=|N,]|; ++q) p=2 g=3 (sumof the inputs is 2 5)

Add clause —N;[p] v —=N[q] v N3[p+q] (Ni[p]=1 and N;[gq]=1 => Ns;[p+q]=1)
Add clause N;[p+1] v N,[g+1] v —=N;[p+g+1] (N;[p+1]=0 and N,[g+1]=0 = N;[p+g+1]=0)
p+1=2 g+1=3 p+q+1=5
(sum of the

Complexity: for n inputs, O(n?) clauses and O(n * log(n)) variables inputs <5)

N3;=N; + N,: bits 1-indexed

N;: bits 1-indexed N,: bits 1-indexed

N;[0]=N,[0]=N;[0]=1; Ny[[Ng+1]]= No[[Np+1]]= N5[|Ns+1[]=1
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Totalizer with Upper Bound
o=a+b+c+d+e+f+g+h<3

0={0705050,030,0,00}=M+n

m={msm,m;mg}=i+j n={nsn,ning}=k+l

i={ijip}=a+b j={j1jo}=c+d k={k;ko}=e+f I={l1lp}=g+h

a b C d e f g h
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Totalizer with Upper Bound:
o=a+b+c+d+e+f+g+h<b=3

Complexity: for n inputs, O(n * b) clauses and O(n * log(n)) variables

0={00,0,0p}=Mm+n

m={0m,mimy}=i+] n={0Nn,n;ng}=k+|

i={ijip}=a+b j={j1jo}=c+d k={k;ko}=e+f I={l1lp}=g+h

a b C d e f g h
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Totalizer: Tightening the Upper Bound
o=a+b+c+d+e+f+g+h<b=3

0={00,0,0p}=M+n

m={0m,m;mg}=i+j n={0n,n;ng}=k+|

i={i1ig}=a+b j={iso}=c+d k={k ko}=e+f I={l,lo}=g+h

R EEREEERERE.




Totalizer: Tightening the Upper Bound
o=a+b+c+d+e+f+g+h<b=3-> b=1

Assert the unit clauses {—o0,} and {—0,}; no need to create a new totalizer!
0 0

0={00,0,0p}=M+n

m={0m,m;mg}=i+j n={0n,n;ng}=k+|

i={i1ig}=a+b j={iso}=c+d k={k ko}=e+f I={l,lo}=g+h

R EEREEERERE.




LSU’s Main Problem

The convergence is often too slow

= The first model might be too far away

" Finding the next best model might be too slow
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SAT-based Local Search to the Rescue

TORC (Target-Optimal-Rest-Conservative) polarity selection

Alexander Nadel: Anytime Weighted MaxSAT with Improved Polarity Selection and Bit-Vector
Optimization. FMCAD 2019: 193-202

= A non-target variable: TORC sets its polarity to its value in the best model so far
= Only after the initial SAT invocation is completed
= |n practice, finds the next best model much faster!

= A target variable: TORC sets its polarity to O
= The first model and any subsequent model is closer to the ideal

= Applied by the state-of-the-art anytime MaxSAT solvers

Polosat: a dedicated SAT-based local search algorithm, invoked instead of SAT (next)

Alexander Nadel: On Optimizing a Generic Function in SAT. FMCAD 2020: 205-213

8/20/24 -
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Polosat for MaxSAT

Hard Clauses H Optimization Target T={t, 4, t,», ..., to}
- Satisfiable - Each target bit t; is a literal (unit clause), associated with an integer

weight w(t) >0

Output: A model M to H which minimizes the weight of the satisfied target bits yw = w, _;*t,; + ... + w *t; + ... + W™,
Polosat: further simulate local search with CDCL SAT
= M := SAT(H)

= Run the following loop until M is not improved anymore

= Go over all the “bad” target bits (not assigned 0 in any model so far)

— Flip the current bad target bit t:
» M’ :=SAT(H, {—t}), but stop after 1000 conflicts! (—t is an assumption)

— If (satisfiable and M’ improves M) M := M’
= Always apply TORC: fix targets to 0 and non-targets to the best model so far
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Polosat Cont.

Default in state-of-the-art anytime MaxSAT solvers

= Used by the top 3 solvers in all the 4 anytime categories @ MaxSAT Evaluation 2023
Can be applied to optimize any PB function
Enabler for solving industrial optimization problems at Intel

Recently shown to boost Pseudo-Boolean (PB) Optimization

s Markus Iser, Jeremias Berg, Matti Jarvisalo:
Oracle-Based Local Search for Pseudo-Boolean Optimization. ECAI 2023: 1124-1131

#


https://dblp.org/db/conf/ecai/ecai2023.html

Agenda

How does a conflict-driven SAT solver work?

" The core: backtrack search, Boolean Constraint Propagation (BCP), conflict analysis
= Follow the first SAT Competition winners (from Chaff till Minisat)

Applying SAT by example

= Paradigms: incremental SAT solving, SAT-based local search, example encodings

= Applications: Bounded Model Checking (BMC), proof-based abstraction refinement, bug
hunting, anytime MaxSAT

Advanced core SAT algorithms

= Follow the SAT Competition winners after Minisat & discussion about incremental SAT
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SAT Competition & Race Winners (CNF & Appl. & Seq. & Non-incr. & All-inst.)
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RSAT’s Phase Saving

Polarity selection: always choose the latest polarity — aka phase saving

Knot Pipatsrisawat, Adnan Darwiche:
A Lightweight Component Caching Scheme for Satisfiability Solvers. SAT 2007: 294-299

a@1 a@1 a@1

Ci=—avfvg b@2 b@2 f@1(Cs)
C,=—avfv—g C@3. c@3 c@2 C OF —C?
Co=—cv—fvg d@4/ —f@3(C,)
Co=—b v —fv—g e@5/ g@3(Cy)
Cs=—e Vv h h@5(Cs) .- f?/<—|a
Cm—ev—hvf f@5(Ce)

g@5(G;)
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RSAT’s Phase Saving

Polarity selection: always choose the latest polarity — aka phase saving

Knot Pipatsrisawat, Adnan Darwiche:
A Lightweight Component Caching Scheme for Satisfiability Solvers. SAT 2007: 294-299

a@1 a@1 a@1

Ci=—avfvg b@2 b@2 f@1(Cs)
C,=—avfv—g —c@3 I —c@3 —c@2 C OF —C?
Co=cv—fvg d@4/ —f@3(C,)
Ci=—bv—fv—g e@S/ g@3(C,)
Cs=—e Vv h h@5(Cs) .- f?/<—|a
Cm—ev—hvf f@5(Ce)

g@5(Cy)
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Phase Saving

Locality principle: refocus on the currently explored subspace

State-of-the-art polarity selection heuristic till 2020!
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CryptoMiniSat

Mate Soos, Karsten Nohl, Claude Castelluccia: Extending SAT Solvers to Cryptographic Problems. SAT 2009: 244-257

Motivation: XOR’s are notoriously difficult
=  Appear frequently in cryptographic problems

= Pruning doesn’t work for XOR gates

INPUT  OUTPUT INPUT OUTPUT
ABl Q AlBl Q
A A
Q
B:)D_Q o, avbv-—g B:D 0l0] 0 | av_g
01 1 av—-bvq 01 0 b v —q
1ol 1 mavbvg 10| o
—|av—|bvq
111 0 —laV—le—lq 111 1

CryptoMiniSat is still under active development!

m CryptoMiniSat 5 | Wonderings of a SAT geek (msoos.org)
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https://dblp.org/pid/82/844.html
https://dblp.org/pid/77/1880.html
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https://www.msoos.org/cryptominisat5/

CryptoMiniSat (as of 2010): Techniques

XOR clauses

= |dentification, separate propagation & watches, binary XORs, Gaussian elimination

Polarity selection:

= Phase saving + occasional random flipping

Heuristics tuned separately for cryptographic vs. industrial instances

= based on the percentage of XOR clauses and stability of variable activity

3 techniques presented next (after some preliminary material)
1. On-the-fly subsumption
2. Failed literal probing

3. Hyper-binary resolution
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Conflict Analysis as Resolution o1

Ci=—bvec Parent Clause
b@2
C,=—av-cv d
C3= —dve //’/
Cp=—av —d v —e ///// c@2
a@1 e
Cl——|bVC T
d@2
C2=—|a\/—|CVd e
-1 e@2 //////// e@z
@2 C3: —dve ' C4=—|a\/—|dV—|e )

- The conflict clause is, in fact, derived by resolution (from the conflict upwards)
- Rightmost cut in the graph = resolution over the conflicting variable
- The cut goes one step leftwards = resolution goes one step upwards
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Conflict Analysis as Resolution o1

(:1=:——J3 VvV C

b@2

C,=—av-cv d
C3= —dve
(:4== —a Vv —d v —e

a@1

—/ 9@2

|
|
|
|
|
: e@2
|

- The conflict clause is, in fact, derived by resolution (from the conflict upwards)

- Rightmost cut in the graph = resolution over the conflicting variable
- The cut goes one step leftwards = resolution goes one step upwards
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Conflict Analysis as Resolution

C1=—|bVC
C2=—|aV—|CVd
C3=_|d\/e

C4= —a Vv —d v —e

a@1

|

|

1

)

2 2 1d@2
b@.) Cl Cg Cz! @

] I —/ 9@2

= |

: |

|
: e@2
|

- The conflict clause is, in fact, derived by resolution (from the conflict upwards)
8/20/24 - Rightmost cut in the graph = resolution over the conflicting variable

- The cut goes one step leftwards = resolution goes one step upwards




Conflict Analysis as Resolution 2@1
Co=—b v f - Variable not in the implication graph?

Ci==bvc b@2
C,=—av-—-cvd

C3= —dve

C4= —a Vv —d v —e

a@1

—|E@2

e@?2
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Conflict Analysis as Resolution 2@1

Co=—b v f - Variable not in the implication graph =
Com—b v c not part of the resolvent = skip over, b @2
= don’t change the resolvent & continue! @
C,=—av-cv d
—av—b
(:3=:—ﬂCi\/ (S

(:4= —a Vv —d v —e

a@1

—|E@2

e@?2
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On-the-fly Subsumption

The idea: if an intermediate resolvent R subsumes clause C = replace C by R

Youssef Hamadli, Said Jabbour, Lakhdar Sais: Learning for Dynamic Subsumption. Int. |. Artif. Intell.
Tools 19(4): 511-529 (2010)

Hyojung Han, Fabio Somenzi: On-the-Fly Clause Improvement. SAT 2009: 209-222

Applied by CryptoMinisat, Kissat, CaDiCal, IntelSAT
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On-the-fly Subsumption Example

Ci=—bvec

C,=—av-—-cvd — C))=—a v —cC
Ci;=—dve

Cs=—av—-dv—e — C4'=—av—d
a@1

—|E@2

e@?2
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Failed Literal Probing: the Basics

Chu Min Li, Anbulagan: Heuristics Based on Unit Propagation for Satisfiability Problems. [|CAI (1) 1997: 366-371

Daniel Le Berre: Exploiting the real power of unit propagation lookahead. Electron. Notes Discret. Math. 9: 59-80 (2001)

An inprocessing technique orthogonal to the backtrack search
= Used by CryptoMinisat, Kissat, CaDiCal

Carried out at the beginning or after a restart

For every variable v

= Assignvand BCP
= |f contradiction, add the unit clause (—v) and continue to the next loop iteration

= Assign —v and BCP
= |f contradiction, add the unit clause (v) and continue to the next loop iteration

= For every literal |, implied by both v and —v, learn the unit clause (l)
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https://dblp.org/db/conf/ijcai/ijcai97.html

Hyper-Binary Resolution

Fahiem Bacchus: Enhancing Davis Putnam with Extended Binary Clause Reasoning. AAAI/IAAI 2002: 613-619

Fahiem Bacchus, Jonathan Winter: Effective Preprocessing with Hyper-Resolution and Equality Reduction. SAT 2003: 341-355
Inés Lynce, Jodo P. Marques Silva: Probing-Based Preprocessing Techniques for Propositional Satisfiability. ICTAI 2003

Lvivigv.. v

Hyper-binary resolution =l v
_Ilz V I — In V I

_IIn_l V I
Used during preprocessing (CryptoMinisat, Kissat)
= By manipulating the binary implication graph
= A graphin which the edges correspond to binary clauses
= Also handy to derive and merge equivalent literals
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Glucose

Gilles Audemard, Laurent Simon: On the Glucose SAT Solver. Int. J. Artif. Intell. Tools 27(1): 1840001:1-
1840001:25 (2018)

A well-known and widely used solver
= Derived from Minisat

= Still in use in many incremental applications

Introduced the Literal Block Distance (LBD) measure for clause quality
LBD-based clause deletion and restart strategies

Changes in VSIDS implementation

Binary resolution during conflict analysis
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Glucose’s Literal Block Distance (LBD)

What makes a conflict clause a good one?

LBD: the number of decision levels in the clause

= Variables are propagated together: related and likely to be propagated together again

Recall: Locality
= Focus the search on the relevant data

= Learn strong clauses from the local context

LBD is:
= calculated when the conflict clause is created
= ypdated when a clause is visited during conflict analysis

= widely used by modern solvers
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Glucose: LBD-based Clause Deletion

Delete half of the clauses based on LBD score
= Ties are broken, based on activity
= The deletion occurs every 2000 + 300 * x conflicts, where x is the number of clause deletions so far

= Deletion is postponed, if the clauses are “too good”
= Median LBD < 3 - postponed by 1,000 conflicts
= Highest LBD <5 = postponed by 1,000 conflicts

Exceptions

=  Glue clauses are kept forever
=  Glue clause: a clause with LBD=2

=  Whenever the LBD goes down, the clause is kept for one more round

= Keep parent clauses (for correctness)
=  Glucose removes clauses not necessarily at decision level 0
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Glucose: LBD-based Restart Strategy

Intuition: restart, when the latest clauses are bad (their LBD is too high)

When to restart:
= C:current LBD average over the latest 50 conflicts (since Glucose 2.1)
= @G:global LBD average
= Restart whenC*0.8>G
= 0.8:since Glucose 2.1
Too aggressive:
= Yields restarts every 50 conflicts

=  Might be performed too close to a satisfying assignment

Postpone restart when the number of assigned literals grows suddenly
= AC: current average of assigned literals when a conflict occurs (over the latest 5000 conflicts)
= AS: global average of assigned literals when a conflict occurs

= Postpone when 1.4 * At>AS
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VSIDS in Glucose

VSIDS increments activity by an exponentially increasing (g=1/f)#conflict

= Minisat: f=0.95 = g~1.05

Since Glucose 2.3

= every 5000t conflict, f is increased by 0.01, starting at 0.8 until 0.95 is reached

More dynamic at the beginning of the search, stabilizes later
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Binary Resolution during Conflict Analysis

The idea: given a learnt clause C, remove unnecessary literals from C by resolution with
satisfied (non-parent!) binary clauses

Gilles Audemard, Jean-Marie Lagniez, Bertrand Mazure, Lakhdar Sais: RCL: Reduce learnt
clauses. https://baldur.iti.kit.edu/sat-race-2010/descriptions/solver_10.pdf, 2010
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Binary Resolution Example

Ci= —avb a@1

IlUIP
C,=—av-bvc b@1 /
Ci=—bv—-cv-—-dve c@1 = @2
Ci=—bv-acv-—-dv—e d@2 I
Cs=b v —cC ><
—e@2

C6=—|bV—|CV—|d

C7=—|CV—|d

- Minimization is unapplicable
- Binary resolution with C; works!
- Cqis a satisfied non-parent clause
- The implementation goes over binary watches of C’s literals
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Binary Resolution Heuristic

Applied for newly learnt clauses for which both the following conditions hold:
= Maximal size of 30

= Maximal LBD of 6

Standard since Glucose
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Glucose in Non-Incremental Mode

Preprocess()  // Variable elimination & subsumption & self-subsuming resolution

While (true)
= Literal | = Decide() // Updated variable-based EVSIDS
= BCP(l)
= |f (conflict)
= ConflictAnalysisLoop() // Minimized 1UIP + binary resolution

= |f (learned an empty clause)
=  Return UNSAT

= |f (all the variables are assigned)
= Return SAT

= Qccasionally, restart // LBD-based

Occasionally, delete conflict clauses // LBD-based
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COMIiniSatPS

Chanseok Oh: Between SAT and UNSAT: The Fundamental Difference in CDCL SAT. SAT 2015: 307-323

UNSAT Instance

= A proofis required
= Strong conflict clauses are essential

= Refocus on locally useful variables & clauses to learn stronger clauses -

= Aggressive restart strategy and VSIDS score update

SAT Instance

= Can be solved instantly with a perfect oracle
= Less need for conflict clauses in practice (demonstrated experimentally)

= Let the solver complete finding a potential model 2>

= Slow restart strategy and VSIDS score update

COMiniSatPS: combining SAT & UNSAT stages in every (long enough) solver invocation

Clause deletion: 3-tiered scheme
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https://dblp.org/db/conf/sat/sat2015.html

COMiniSatPS: Combining SAT & UNSAT Stages

UNSAT stage warm-up: 10,000 initial conflicts
C=100

While (no solution)

= SAT stage: C conflicts

= UNSAT stage: 2*C conflicts
= C=C*1.1

VSIDS Score Increment (g=1/0.999)#conflict (g=1/0.95)#conflict
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COMIiniSatPS: 3-Tiered Clause Management & Deletion

Core: kept forever

= |BD < 3 (at creation or during conflict analysis)

= LBD threshold goes up to 5, if at 100,000 conflicts, there are <100 Core clauses

Tier2: bad clauses are relegated to Local

= 3 < LBD <6 (at creation or during conflict analysis)

= Every 10,000 conflicts, clauses not touched for 30,000 conflicts are relegated

Local: bad clauses are deleted
= |LBD > 6 (at creation)

= Every 15,000 conflicts, the less active half of the clauses is deleted
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Learning Rate Based (LRB) Decision Heuristic

Jia Hui Liang, Vijay Ganesh , Pascal Poupart, Krzysztof Czarnecki:
Learning Rate Based Branching Heuristic for SAT Solvers. SAT 2016: 123-140

Similarly to VSIDS, choose and pick variables, based on activity

Boost variables, which made impact during their latest assignment term
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https://dblp.org/db/conf/sat/sat2016.html

Learning Rate Based (LRB)

Just before unassigning v

C[v]: #conflicts in which v’s score was updated during the latest assignment term

Visited during conflict analysis or belongs to the parents of literals in the new conflict clause
age[v]: the number of conflicts during the latest assignment term
LR[v]: age[v] / C[v]
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LRB Details

When a variable is unassigned, adjust its activity, based on LR[v]

= const double oldActivity & activity[var];

= activity[var] ¢ P * LR[var] + (1 - P) * oldActivity;

= P:from 0.4 down to 0.06, decremented by 0.000001 every conflict when LRB is used
= Down to 0.06 after 340,000 conflicts when LRB is used

The update algorithm uses Exponential Recency Weighted Average (ERWA)

= used in nonstationary Multi-Armed Bandit (MAB) problems to estimate the average reward of different
actions

Sutton, R. S., and Barto, A. G.: Reinforcement learning: An introduction, volume 1. MIT press Cambridge, 1998.

Summary: LRB considers the “local context” of the latest assignment term, more so in the
beginning of the search
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MapleCOMSPS: Combining SAT & UNSAT Stages

1. UNSAT stage warm-up: 10,000 initial conflicts

Luby(512)

2. SAT stage till 2,500 sec. from the beginning 20000 .

3. UNSAT stage forever % :ZZZZ I
DA

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

Restart Number

LRB Glucose’s EVSIDS (0.8>0.95)
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MapleLCMDist

DISTANCE decision heuristic for the initial stage (first 50,000 conflicts)

Fan Xiao, Chu-Min Li, Mao Luo, Felip Manya, Zhipeng Ld, Yu Li: A branching heuristic for SAT
solvers based on complete implication graphs. Sci. China Inf. Sci. 62(7): 72103:1-72103:13 (2019)

Vivification aka distillation aka learnt-clause-minimization

Cédric Piette, Youssef Hamadi, Lakhdar Sais: Vivifying Propositional Clausal Formulae. ECAI
2008: 525-529

HyoJung Han, Fabio Somenzi: Alembic: An Efficient Algorithm for CNF Preprocessing. DAC 2007:
582-587

Mao Luo, Chu-Min Li, Fan Xiao, Felip Manya, Zhipeng Liu: An Effective Learnt Clause
Minimization Approach for CDCL SAT Solvers. I|CAI 2017: 703-711

Chu-Min Li, Fan Xiao, Mao Luo, Felip Manya, Zhipeng Lu, Yu Li: Clause vivification by unit
propagation in CDCL SAT solvers. Artif. Intell. 279 (2020)
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https://dblp.org/pid/75/6466.html
https://dblp.org/db/conf/ijcai/ijcai2017.html

DISTANCE Decision Heuristic

Observation: at the beginning, variable scores are inaccurate, because they are based
on very few conflicts

DISTANCE Heuristic:

= Yet another separate “activity” priority queue, used for the first 50,000 conflicts

" |Increment v’s activity, depending on the longest distance between v and the conflict
= The closer v to the conflict, the more v contributes

8/20/24 q



DISTANCE: Longest Distance to Conflict

(©) 5) 3) 7 (1)

Figure 1 Complete implication graph implying the empty clause from clause z7g V =224 V =2g7. Numbers in parentheses
below vertices represent the longest distance from the vertex to O.
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DISTANCE: Details

distAct[v] is the DISTANCE activity, initialized to O for every v
longDist[v]: the longest distance to the conflict for the current conflict

When v contributes to a conflict, distAct[v] is incremented by incx1/longDist[v]
" inc: give more weight to recent conflicts

= Start:inc< 1

= After each conflict: inc & inc/ 0.95
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Vivification: an Inprocessing Algorithms

At decision level O (inprocessing), go over the clauses and simplify them as follows:

letC=c; Vv, V... Vv, beaclause
Foriin[1,2,...n]

= |f ¢ is assigned O, remove ¢, from C and continue to the next loop iteration
u —|C1/\ cee /\ _ICi_l :> —|Ci ; C1V ) \/ Ci-lv —|Ci
= Resolve Cwithc;Vv...Vvci Vv —C
= |f ¢ isassigned 1, replace Cbyc;Vv .. VvV and stop
u —|C1/\ VAN _ICi_]_ :> Ci ; Cl V..V Ci-l V Ci
" C;V..V .V subsumes C
= Assign the literal —c;

= Run BCP
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Controlling Vivification in MapleLCMDist

Vivify only the learnt clauses

When to apply vivification?

- Immediately after each clause database reduction
- #clauses: 2000 + 2 x 300 x database-reductions-so-far

When to vivify clause C?
- Chas not yet been vivified, and

- Cis alearnt with a small LBD: consider only half of the learnt’s, sorted by LBDs

What is the best literal order in literal C

- Default (as maintained by the solver)
- More active literals come earlier because of WL management

8/20/24 q



SAT Competition & Race Winners (CNF & Appl. & Seq. & Non-incr. & All-inst.)
2009 2010 2011

Crypto
MiniSat

2002 2003

ichafi [§ Forkit | 2Cha RSAT

2004 2005 2006 2007 2008

Glucose

Moskewicz Goldberg  Moskewicz Pipatsrisa  Eén Biere Audemard

Madigan Novikov Madigan Eén Sorensson wat Sérensson Soos Simon

Zhao Zhao Sorensson Darwiche

Zhang Zhang

Malik Malik

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
COMSPS j LCMDist LCMDist LCMDist

Audemard Biere Biere Chen ) ) ChronoBT Sl Biere Cherif

Simon Liang Xiao DLV3 Fazekas  Habet
Oh Luo Nadel Fleury Terrioux
Ganesh Li Ryvchin Kochemazov Hejsinger
Czarnecki Manya Zaikin
Poupart Lu Kondratiev

2022 2023 Semenov

Zheng Haberlandt

He Green

Chen

Zhou

Li

MiniSat-based:

Armin Biere’s&
derived:

Others:




Up-to-date Conflict Analysis Algorithm
Covers GRASP & Chaff & Modern Solvers

1. Backtrack before conflict analysis: backtrack to the conflict level 9, if required
= Required in GRASP and called Non-Chronological Backtracking (NCB) in GRASP

= Not required in Chaff: current decision level = conflict level
2. Learn an asserting clause C=[c,@°, c,®P<°, c,@@<F, ..., c@@<F, ..., c||@F]
= 1UIP clause in both GRASP & Chaff

3. Optionally, learn other clauses

= GRASP: a clause for every other UIP of the conflict decision level

4. Backtrack: backtrack to a level in [, B+1, ..., 0-1] -- makes the asserting clause unit
= GRASP -- always 0-1: Chronological Backtracking (CB) in today’s terminology
= Chaff -- always 3: Non-Chronological Backtracking (NCB) in today’s terminology

5. Flip ¢y by implying it in Cand run BCP
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Conflict Analysis Evolvement

1996 2001 2018

GRASP Chaff Chaff’s algorithm is the state-of-the-art et Chro.

noBT

Maple LCM_Dist_ChronoBT: the return of Chronological Backtracking (CB)
Alexander Nadel, Vadim Ryvchin: Chronological Backtracking. SAT 2018: 111-121

= A backtracking heuristic choosing between CB and NCB
= First 4,000 conflicts (warm-up): NCB
= After 4,000 conflicts: NCB iff backtrack level - conflict level £ 100

= Today: Maple-based solvers & Cryptominisat & Kissat (no warm-up in Kissat)
— CaDiCal & IntelSAT also combine NCB & CB, but differently

= CB algorithm is similar to GRASP’s

= |ntegrating CB with post-GRASP BCP data structures turned out to be highly non-trivial
= Because of simultaneous propagation at several levels
= BCP must be adjusted to prevent correctness & performance issues
= Useful BCP invariants are still violated!
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https://dblp.org/db/conf/sat/sat2018.html

Falsified literal:

Integrating CB and BCP

Example of a necessary adjustment

Satisfied literal:

" —c, and —c, are assigned @1 - the clause is visited by BCP twice

" |mpossible with NCB, where the assigned level is always > max_level(C)

= Need to swap literals to have two highest literals watched

Unassigned literal:

= Essential for correctness —in order not to miss conflicts after backtracking!

Useful invariants are still violated even with the adjustments:

= |owest implication: no assigned literal can be implied at a lower level

= |owest conflict: every conflict, BCP returns a clause
falsified at the lowest possible level —

o
=

c1 c, @20 @30 ‘
@1 @1 @20 @30 ‘
@30 @20 @1 @1
X| @20 @10 @10
@30 @30 @1 @1
@20 @20 @1 @1

Intel® SAT Solver (IntelSAT): a new formally proven BCP alg. with a possible solution

Alexander Nadel: Introducing Intel® SAT Solver. SAT 2022,

SAT’2024: Robin Coutelier, Mathias Fleury and Laura Kovacs

As of 2022: expecting new formal frameworks Lazy Reimplication in Chronological Backtracking (absiract)
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MapleLCMDistChronoBTDLv3

Duplicate Learnts: screen learnt clauses and add duplicates as permanent clauses

Stepan Kochemazov, Oleg Zaikin, Alexander A. Semenov, Victor Kondratiev: Speeding Up CDCL Inference
with Duplicate Learnt Clauses. ECAl 2020: 339-346
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Duplicate Learnts (DL)

Uses clause hash table
Hashes learnts with LBD(C) < Ibd_limit=12
Repeated once or twice = Tier2; Repeated 3-times - Core forever

Hash size limit = 500,000. When the limit is reached:
= Purge all clauses repeated once

" |ncrease the limit by 10%

DL works well with vivification

= Vivification may reduce the LBD score of clauses to make them eligible for DL
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MapleLCMDistChronoBTDLv3

Preprocess() // Variable elimination & subsumption & self-subsuming resolution
While (true)

= Literal | = Decide() // DISTANCE: 50,000 conf. = LRB: 2,500 sec. from start = EVSIDS
= BCP(I)

= |f (conflict)
= ConflictAnalysisLoop() // minimized 1UIP + binary resolution; Combine CB & NCB

= |f (learned an empty clause)
= Return UNSAT

= |f (all the variables are assigned)
= Return SAT

= Qccasionally, restart // Luby: 2,500 sec. from start = LBD-based
= Qccasionally, delete conflict clauses // 3-tiered LBD-based

= Qccasionally, inprocess // vivification + restore duplicates
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Kissat vs. Maple-based Solvers

Variable decision heuristic: VMTF for the UNSAT stage

= Variable-Move-To-Front (VMTF): store variables in a conflict-driven stack and pick the top-most variable from there
L. Ryan: Efficient algorithms for clause-learning SAT solvers. Masters thesis, Simon Fraser University, February 2004

Advanced inprocessing

= Vivification: the only technique available also in Maple

= Failed literal probing and hyper-binary resolution (removed in 2022)

= Bounded variable elimination, equivalent literal substitution, blocked clause elimination, bounded variable addition, ...

Armin Biere, Matti Jarvisalo, Benjamin Kiesl: Preprocessing in SAT Solving. Handbook of Satisfiability 2021: 391-435

Low-level optimizations, not present in Maple
= Binary clauses are fully inlined

=  Watch lists are contained in a contiguous buffer (requires occasional defragmentation)

New polarity selection algorithm: local search & target phases

= Subsequent slides: skipping today, tune in for Armin’s tutorial tomorrow!
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KissatMAB

The change is in the decision heuristic

Every restart, the solver chooses between:

1. VSIDS
2. CHB: predecessor of LRB

Using Multi-Armed Bandit (MAB) framework

Reward function: “we choose a reward function that estimates the ability of a heuristic to reach
conflicts quickly and efficiently.”

The reward function to maximize: log,(decisions) / dVars
(a) decisions : the number of decisions
(b) dVars: the number of variables used as decision variables at least once

As many decisions as possible over the same variables = locality principle!
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KissatMAB-HyWalk

The change is in the local search component

“Combines BandSAT, FPS, and some other local search algorithms with different random
walking or say local optimal escaping strategies”
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CaDiCalL and SBVA-CaDiCalL

CaDiCalL
=  An incremental SAT solver
=  Around since 2017

64-bit clause indexing
= Allows one to handle huge instances, but increases the memory footprint

First open-source solver with incremental preprocessing (since 2019)

Katalin Fazekas, Armin Biere, Christoph Scholl: Incremental Inprocessing in SAT Solving. SAT 2019: 136-154

= We have a closed-sourced solver Fiver with incremental preprocessing (since 2012)
Alexander Nadel, Vadim Ryvchin, Ofer Strichman: Preprocessing in Incremental SAT. SAT 2012: 256-269

= Fiver supports SatELite, whereas CaDiCal supports more techniques
Details: CaDiCal 2.0 Armin Biere, Tobias Faller, Katalin Fazekas, Mathias Fleury, Nils Froleyks and Florian Pollitt, CAV’24

SBVA-CaDiCalL

= Smart implementation of Bounded Variable Addition (BVA) inprocessing on top of CaDiCal
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https://dblp.org/db/conf/sat/sat2019.html
https://dblp.org/db/conf/sat/sat2012.html

Incremental Solvers after Minisat

Glucose

A dedicated feature: ignores assumption literals in LBD calculations

CryptoMinisat

Maple-based SC winners since MapleCOMSPS (SC’16) aren’t incremental, but MergeSAT is:
Norbert Manthey: The MergeSat Solver. SAT 2021

SC incremental tracks:

= 2017 —won by the 2015 SR winner abcdSAT
= 2020 - won by CryptoMinisat

Kissat isn’t incremental, but CaDiCal is

= 2024 — CaDiCal 2.0 shown to outperform CryptoMinisat on SC’20 and some other incremental bench’s
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Incremental Solvers after Minisat: IntelSAT

IntelSAT Alexander Nadel: Introducing Intel(R) SAT Solver. SAT 2022: 8:1-8:23

= An open-source CDCL solver written from scratch in C++20
=  Optimized towards incremental app’s with rapid mostly SAT queries
= Triggered by performance needs of industrial optimization problems
= Application in the paper: anytime unweighted MaxSAT -- improves the state-of-the-art

= Various applications @ Intel: placement, routing, scheduling, etc.

= Incremental Lazy Backtracking (ILB):

= Upon a new incremental query Solve(A), backtrack to the highest possible level, rather than 0
— Let k be the maximal decision level, whose decision literal appears in A
— ILB backtracks to k (instead of 0)

= |mplemented in CaDiCal 2.0

Chronological backtracking with reimplication: guarantees lowest implication & lowest conflict
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https://dblp.org/db/conf/sat/sat2022.html

Is Progress on SC Benchmarks Relevant to Incremental SAT?

Incremental SAT: no progress since 2013 [kis, SAT’21]

= Glucose 3.0 (2013) is largely on par with a leading Maple-based solver (2021) on
= Satisfiability-based MaxSAT: mostly SAT queries
=  Unsatisfiability-based MaxSAT: mostly UNSAT queries
=  Minimal Unsatisfiable Core (MUC) Extraction: mixed queries

= None of the 5 latest techniques which improve non-incremental SAT has a significant positive impact on incremental SAT
My experience at Intel till 2021: no progress on industrial optimization problems
= e.g., placement in physical design [CNR, TACAS’21]

= Triggered IntelSAT development in 2021
CaDiCal 2.0 CAV’24 paper: progress on a variety of benchmarks, but no results on [KIS, SAT’21] bench’s

My intuitive take (without rigorous empirical evidence) -- it depends on the application:
= Heavy SAT invocations (e.g., BMC): non-incr. progress is relevant; incremental inprocessing can be helpful

= [ight SAT invocations (e.g., MaxSAT, MUC extraction, PDR): non-incr. progress is less relevant; ILB can be helpful

[CNR, TACAS’21] Aviad Cohen, Alexander Nadel, Vadim Ryvchin: Local Search with a SAT Oracle for Combinatorial Optimization. TACAS (2) 2021: 87-104
[KIS, SAT’21] Stepan Kochemazov, Alexey Ignatiev, Jodo Marques-Silva: Assessing Progress in SAT Solvers Through the Lens of Incremental SAT. SAT 2021: 280-298
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https://dblp.org/db/conf/tacas/tacas2021-2.html
https://dblp.org/db/conf/sat/sat2021.html

Conclusion

SAT is an unresolved mystery!
Yet, SAT solvers are scalable widely used tools

Main goals for today:

= Explain how modern SAT solvers work

= Convey intuition why they work in practice

= Provide examples of applying SAT
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