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Who Cares?

Chemistry, biochemistry, and drug design (graphs are molecule fragments or proteins).

Computer vision.

Compilers (instruction generation, code rewriting).

Plagiarism and malware detection.

Livestock epidemiology (contact and trade graphs).

Designing mechanical lock systems.
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In Theory. . .

Subgraph finding is hard.

Subgraph counting is hard.

Approximate subgraph finding is hard.
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In Practice. . .

We have good solvers for subgraph problems.

Some applications involve solving thousands of subgraph isomorphism queries per second.

We can solve clique on larger graphs than we can solve all-pairs shortest path.1

Maximum common subgraph is still a nightmare. . .

People often don’t actually want to solve simple subgraph isomorphism.

1Terms and conditions apply.
Ciaran McCreesh
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Graphs Aren’t Just Graphs

Vertex and / or edge labels, or broader compatibility functions.

Directed edges.

Multi-edges, more than one edge between vertices.

Hyper-edges, between more than two vertices.

Partially defined graphs?

No need for injectivity (homomorphism), or only local injectivity.

Don’t forget about loops!

Might want all solutions, or a count.
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Two Solver Design Philosophies

1 Pick a vertex, guess where it goes, and start trying to grow a connected component.

Popular solvers: VF2, VF3, RI, TurboISO, . . .
Very fast to start up.
Often good on easy instances.
Spectacularly bad on hard instances, and on some easy instances.

2 Use constraint programming, build a mapping from the pattern graph to the target graph.

LAD, Glasgow Subgraph Solver.
Consistent performance on easy instances.
Much better on hard instances.

Ciaran McCreesh
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The Glasgow Subgraph Solver

https://github.com/ciaranm/glasgow-subgraph-solver

A CP style solver specifically for subgraph algorithms.

Subgraph isomorphism, and all its variants (induced / non-induced, homomorphism, locally
injective, labels, side constraints, directed, . . . ).

Also special algorithms for clique.

Guaranteed no bugs!

Or at least, any buggy output will always be detected, if you enable proof logging.
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Benchmark Instances

http://perso.citi-lab.fr/csolnon/SIP.html

14,621 instances from Christine Solnon’s collection:

Randomly generated with different models (MIVIA suite).
Real-world graphs.
Computer vision problems.
Biochemistry problems.
Phase transition instances.

At least. . .

≥ 2,110 satisfiable.
≥ 12,322 unsatisfiable.

A lot of them are very easy for good algorithms.
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Easy Conclusion!

CP is best!
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An Observation about Certain Datasets

All of the randomly generated instances from the MIVIA suites are satisfiable.

The target graphs are randomly generated, and patterns are made by selecting random
connected subgraphs and permuting them.

These instances are usually rather easy. . .

Many papers use only these instances for benchmarking.
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A Different Easy Conclusion!

CP is slow! RI is best!

Ciaran McCreesh

Finding Little Graphs Inside Big Graphs 15 / 70



Finding Subgraphs Algorithm Basics Filtering Search Detour: Hard Instances Back to Search Summary Research Topics

Constraint Programming

We have some variables, each of which has a domain of possible values.

Give each variable a value from its domain, whilst respecting all constraints.
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Building a Mapping

One variable per pattern vertex.

Domains and values are target vertices.

We think of these variables as defining a function.
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Injectivity

Can’t map to the same target vertex twice.

Could say that each pair of pattern vertices are not equal?

We prefer high-level constraints, so we just say “all different”.
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Adjacency

If A and B are adjacent in the pattern, f(A) must be adjacent to f(B) in the target.

Various ways of encoding this. In SAT we’d need n4 clauses, or n3 if we’re sneaky.

In practice: we write a special constraint propagator to do this efficiently.
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Backtracking Search, Maintaining Consistency

Pick a variable V that has more than one value remaining.

For each of its values v in turn:
Try V = v, and do some inference.

No other variable can take the value v.
Variables adjacent to V must be given values adjacent to v.

If we get an empty domain, we made a bad guess.
If every variable has one value left, we have a solution.
Otherwise, recurse.
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Data Structures

We store a set of values for every variable.

Need to be able to test whether a specific value is present, remove values, count how many
values remain.

Must either be copyable, or have some way of doing backtracking.

Objectively correct answer: bitsets.
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Degree Filtering

Can’t map a vertex of degree d to a vertex of degree less than d.
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Neighbourhood Degree Sequences

Can’t map a vertex whose neighbours have degree 4, 3, 2 to a vertex whose neighbours
have degree 4, 2, 2, 2.
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Dynamic Degrees?

If a target vertex disappears from every domain, can pretend it’s not there at all.

This reduces the degree of all of its neighbours.

Maybe this leads to more filtering?

Problem: detecting this can be moderately expensive, so possibly not worth doing?
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Adjacency Filtering

When P gets mapped to t, neighbours of P can only be mapped to neighbours of t.

Store domains and neighbourhoods as bitsets.
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Injectivity Filtering

A ∈ {1, 2}
B ∈ {2, 3}
C ∈ {1, 3}
D ∈ {1, 4, 5, 6}
E ∈ {2, 5}
F ∈ {3, 5}
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Matchings and All-Different

Draw a vertex on the left for each variable, and a vertex on the right
for each value.

Draw edges from each variable to each of its values.

A maximum cardinality matching is where you pick as many edges as
possible, but each vertex can only be used at most once.

We can find this in polynomial time.

There is a matching which covers each variable if and only if the
constraint can be satisfied.

In fact, there is a one to one correspondence between perfect
matchings and solutions to the constraint.
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Sudoku
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How do Humans Solve Sudoku?

18 23 23 245 456 456 279 378 23589
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Generalised Arc Consistency

Generalised Arc Consistency (GAC): for a given constraint, we can pick any value from any
variable, and find a supporting set of values from each other variable in the constraint
simultaneously.

Each remaining value appears in at least one solution to the constraint.
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Hall Sets

A Hall set of size n is a set of n variables from an “all different” constraint, whose domains
have n values between them.

If we can find a Hall set, we can safely remove these values from the domains of every other
variable involved in the constraint.

Hall’s Marriage Theorem: doing this is equivalent to deleting every edge from the matching
graph which cannot appear in any perfect matching.

So, if we delete every Hall set, we delete every value that cannot appear in at least one way
of satisfying the constraint. In other words, we obtain GAC.

Ciaran McCreesh
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GAC for All-Different

There are 2n potential Hall sets, so considering them all is probably a bad idea. . .

Similarly, enumerating every perfect matching is #P-hard.

However, there is a polynomial algorithm!
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GAC for All-Different 18 23 23 245 456 456 279 378 23589
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GAC for All-Different 18 23 23 245 456 456 279 378 23589
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Is This a Good Idea?

Various techniques to avoid running all-different all of the time.

Faster bit-parallel propagator that can miss some deletions.

Can also do all-different on edges. . .
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Distance Filtering

Adjacent vertices must be mapped to adjacent vertices.

Vertices that are distance 2 apart must be mapped to vertices that are within distance 2.

Vertices that are distance k apart must be mapped to vertices that are within distance k.
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Distance Filtering

Gd is the graph with the same vertex set as G, and an edge between v and w if the
distance between v and w in G is at most d.

For any d, a subgraph isomorphism i : P ↣ T is also a subgraph isomorphism
id : P d ↣ T d.
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Distance Filtering

We can do something stronger: rather than looking at distances, we can look at (simple)
paths, and we can count how many there are.

This is NP-hard in general, but only lengths 2 and 3 and counts of 2 and 3 are useful in
practice.

We construct these graph pairs once, at the top of search, and use them for degree-based
filtering at the top of search, and “adjacency” filtering during search.
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Supplemental Constraints

a b

c d

eP :

1 2

3 4

5 6

T :

a b

c d

eP 1+2:

1 2

3 4

5 6

T 1+2:
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Induced Subisomorphisms

Find something that is a non-induced subisomorphism

P ↣ T

and simultaneously a non-induced subisomorphism

P ↣ T
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Partially Defined Graphs

Challenge for you!
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Clique Neighbourhood Filtering

If a pattern vertex is contained in a k-vertex clique, it must be mapped to a target vertex
contained in at least a k-vertex clique.

Valid without injectivity (with a caveat for loops).
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Variable and Value Ordering Heuristics

Variable ordering (i.e. pattern vertices): smallest domain first, tie-breaking on highest
degree.

Tends to pick vertices adjacent to things we’ve already picked.

Value ordering (i.e. target vertices): highest degree to lowest.
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Sanity Check
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Clique in Random Graphs
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Let’s Generate Random Instances a Different Way

Decide upon a pattern graph order (number of vertices) and density.

Decide upon a target graph order and density.

Generate instances at random, independently.
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When is Non-Induced Subgraph Isomorphism Hard?
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When is Non-Induced Subgraph Isomorphism Hard?

G(10, x) ↣ G(150, y) G(20, x) ↣ G(150, y) G(30, x) ↣ G(150, y)
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Hand-Wavy Theoretical Justification

Maximise the expected number of solutions during search?

If P = G(p, q) and T = G(t, u),

⟨Sol⟩ = t · (t− 1) · . . . · (t− p+ 1)︸ ︷︷ ︸
injective mapping

· uq·(p2)︸ ︷︷ ︸
adjacency

Smallest domain first keeps remaining domain sizes large.

High pattern degree makes the remaining pattern subgraph sparser, reducing q.

High target degree leaves as many vertices as possible available for future use, making u
larger.
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Induced is Much More Complicated

G(10, x) ↪→ G(150, y) G(14, x) ↪→ G(150, y) G(16, x) ↪→ G(150, y) G(20, x) ↪→ G(150, y)
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Is This Algorithm-Independent?

G(10, x) ↪→ G(75, y) G(14, x) ↪→ G(75, y) G(16, x) ↪→ G(75, y) G(18, x) ↪→ G(75, y)
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Is This Algorithm-Independent?
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Is This Algorithm-Independent?

G(10, x) ↪→ G(75, y) G(14, x) ↪→ G(75, y) G(16, x) ↪→ G(75, y) G(18, x) ↪→ G(75, y)
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Is This Algorithm-Independent?
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Constrainedness

κ = 1−
log

(
tp · uq·(p2) · (1− u)

(1−q)·(p2)
)

log tp
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Constrainedness

G(10, x) ↪→ G(150, y) G(14, x) ↪→ G(150, y) G(16, x) ↪→ G(150, y) G(20, x) ↪→ G(150, y)
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Labelled Subgraph Isomorphism

Vertices have labels, and the isomorphism must preserve labels.

Carbon must map to carbon, hydrogen to hydrogen, . . .

⟨Sol⟩ =
(

Γ (t/k + 1)

Γ (t/k − p/k + 1)

)k

· uq·(p2)
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Labels and Phase Transitions

G(20, x, 1) ↪→ G(150, y, 1) G(20, x, 2) ↪→ G(150, y, 2) G(20, x, 5) ↪→ G(150, y, 5) G(20, x, 20) ↪→ G(150, y, 20)
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Connectivity Algorithms are Really Stupid
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Back to Value-Ordering Heuristics

Largest target degree first.
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However. . .

What if several vertices have the same degree?

Is a vertex of degree 10 really that much better than a vertex of degree 9?
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Discrepancy Search?
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Discrepancy Search?
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Random Search with Restarts and Nogood Recording

Back to the random value-ordering heuristic.

Aggressive restarts: every 100ms.

Nogood recording and 2WL to avoid repeating work.
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Random Search with Restarts and Nogood Recording
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Random Search with Restarts and Nogood Recording
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Value-Ordering Heuristics as Distributions

Traditional view: value-ordering defines a search order.

New view: value-ordering defines what proportion of the search effort should be spent on
different subproblems.

According to people who know more statistics than me, if solutions are uniformly
distributed, then random search with restarts should be better than DFS.
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A Slightly Random Value-Ordering Heuristic

For a fixed domain Dv, pick a vertex v′ from a domain Dv with probability

p(v′) =
2deg(v

′)∑
w∈Dv

2deg(w)

Equally likely to pick between two vertices of degree d.

Twice as likely to select a vertex of degree d than a vertex of degree d− 1.

Justification: solution density and expected distribution of solutions.
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A Slightly Random Value-Ordering Heuristic
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Is It Better?
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Is It Better?
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Parallel Search

Each thread gets its own random seed.

Barrier synchronise on restarts.

Share nogoods.
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Is It Even Betterer?
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Is It Even Betterer?
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Is It Even Betterer?
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Lessons Learned

Got to get a lot of things right:

Design.
Engineering.
Evaluation.
Understanding the hardware.

Being clever only pays off if you can do it quickly.

Except sometimes it pays off even if it’s really expensive.

Not always clear what problem people really want to solve.
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Symmetries

A

B

C D

Only find solutions where C < D.

What about for arbitrary symmetries, in both pattern and target graphs?

Dynamic symmetries?
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Counting and Sampling

We can easily enumerate all solutions.

If we only need a count, can we speed things up?

What if an approximate count is OK?

What if we want a few solutions, but sampled uniformly?

Common in term-rewriting systems.

How does this interact with symmetries and decomposition?
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Proof Logging

Solver

Checker

Verified
Checker

added print statements

Result

Proof

✓ or ✗

Trusted
Result

Input

Result

Kernel
Proof

✓ or ✗
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Proof Logging
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Components

What if the target graph has two components?

What if the pattern graph has two components?

What if the graphs are “nearly” two components?
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Learning

Backtracking is bad. We should do CDCL!

Except it doesn’t seem to work very well. . .
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Inference on Fancy Graphs

What’s the equivalent of neighbourhood degree sequence for directed graphs?

What about if we have labels?

Can these be computed efficiently?
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Automatic Configuration

What if the pattern graph is a triangle? A claw? One edge and one non-edge? A large
clique?

Which supplemental graphs should we use?

Which inference rules are helpful?
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Presolving

Constraint programming solvers take too long to start up for “really easy” instances.

Run a “fast” solver for 0.1s and then switch?

Doesn’t help us for very solution-dense enumeration problems though.
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Performance Portability

Will algorithms designed on this year’s hardware work well next year?

Or on Mac ARM hardware rather than Intel / AMD x64?

On heterogeneous multi-core?
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File Formats

Design a graph file format that isn’t terrible.
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